Exemple #1
0
    def loadImuData(self):
        print "Reading IMU data ({0})".format(self.dataset.topic)

        # prepare progess bar
        iProgress = sm.Progress2(self.dataset.numMessages())
        iProgress.sample()

        Rgyro = np.eye(
            3) * self.gyroUncertaintyDiscrete * self.gyroUncertaintyDiscrete
        Raccel = np.eye(
            3) * self.accelUncertaintyDiscrete * self.accelUncertaintyDiscrete

        # Now read the imu measurements.
        imu = []
        for timestamp, omega, alpha in self.dataset:
            timestamp = acv.Time(timestamp.toSec())
            imu.append(
                self.ImuMeasurement(timestamp, omega, alpha, Rgyro, Raccel))
            iProgress.sample()

        self.imuData = imu

        if len(self.imuData) > 1:
            print "\r  Read %d imu readings over %.1f seconds                   " % (
                len(imu), imu[-1].stamp.toSec() - imu[0].stamp.toSec())
        else:
            sm.logFatal(
                "Could not find any IMU messages. Please check the dataset.")
            sys.exit(-1)
Exemple #2
0
def extractCornersFromDataset(dataset, detector, multithreading=False, numProcesses=None, clearImages=True, noTransformation=False):
    print "Extracting calibration target corners"    
    targetObservations = []
    numImages = dataset.numMessages()
    
    # prepare progess bar
    iProgress = sm.Progress2(numImages)
    iProgress.sample()
            
    if multithreading:   
        if not numProcesses:
            numProcesses = max(1,multiprocessing.cpu_count()-1)
        try:      
            manager = multiprocessing.Manager()
            resultq = manager.Queue()
            manager2 = multiprocessing.Manager()
            taskq = manager2.Queue()
            
            for idx, (timestamp, image) in enumerate(dataset.readDataset()):
                taskq.put( (idx, timestamp, image) )
                
            plist=list()
            for pidx in range(0, numProcesses):
                detector_copy = copy.copy(detector)
                p = multiprocessing.Process(target=multicoreExtractionWrapper, args=(detector_copy, taskq, resultq, clearImages, noTransformation, ))
                p.start()
                plist.append(p)
            
            #wait for results
            last_done=0
            while 1:
                if all([not p.is_alive() for p in plist]):
                    time.sleep(0.1)
                    break
                done = numImages-taskq.qsize()
                sys.stdout.flush()
                if (done-last_done) > 0:
                    iProgress.sample(done-last_done)
                last_done = done
                time.sleep(0.5)
            resultq.put('STOP')
        except Exception, e:
            raise RuntimeError("Exception during multithreaded extraction: {0}".format(e))
        
        #get result sorted by time (=idx)
        if resultq.qsize() > 1:
            targetObservations = [[]]*(resultq.qsize()-1)
            for lidx, data in enumerate(iter(resultq.get, 'STOP')):
                obs=data[0]; time_idx = data[1]
                targetObservations[lidx] = (time_idx, obs)
            targetObservations = list(zip(*sorted(targetObservations, key=lambda tup: tup[0]))[1])
        else:
            targetObservations=[]
Exemple #3
0
    def addAccelerometerErrorTerms(self,
                                   problem,
                                   poseSplineDv,
                                   gravityExpression,
                                   mSigma=0.0,
                                   accelNoiseScale=1.0):
        print
        print "Adding accelerometer error terms ({0})".format(
            self.dataset.topic)

        #progress bar
        iProgress = sm.Progress2(len(self.imuData))
        iProgress.sample()

        # AccelerometerError(measurement,  invR,  C_b_w,  acceleration_w,  bias,  g_w)
        w = 1.0 / accelNoiseScale
        accelErrors = []
        num_skipped = 0

        if mSigma > 0.0:
            mest = aopt.HuberMEstimator(math.sqrt(mSigma))
        else:
            mest = aopt.NoMEstimator()

        for im in self.imuData:
            tk = im.stamp.toSec()
            if tk > poseSplineDv.spline().t_min() and tk < poseSplineDv.spline(
            ).t_max():
                C_b_w = poseSplineDv.orientation(tk).inverse()
                ak = poseSplineDv.linearAcceleration(tk)
                bk = self.accelBiasDv.toEuclideanExpression(tk, 0)
                aerr = ket.AccelerometerError(im.alpha, im.alphaInvR * w,
                                              C_b_w, ak, bk, gravityExpression)
                aerr.setMEstimatorPolicy(mest)
                accelErrors.append(aerr)
                problem.addErrorTerm(aerr)
            else:
                num_skipped = num_skipped + 1

            #update progress bar
            iProgress.sample()

        print "\r  Added {0} of {1} accelerometer error terms (skipped {2} out-of-bounds measurements)".format(
            len(self.imuData) - num_skipped, len(self.imuData), num_skipped)
        self.accelErrors = accelErrors
Exemple #4
0
    def addGyroscopeErrorTerms(self,
                               problem,
                               poseSplineDv,
                               mSigma=0.0,
                               gyroNoiseScale=1.0):
        print
        print "Adding gyroscope error terms ({0})".format(self.dataset.topic)

        #progress bar
        iProgress = sm.Progress2(len(self.imuData))
        iProgress.sample()

        num_skipped = 0
        gyroErrors = []
        w = 1.0 / gyroNoiseScale
        if mSigma > 0.0:
            mest = aopt.HuberMEstimator(math.sqrt(mSigma))
        else:
            mest = aopt.NoMEstimator()

        for im in self.imuData:
            tk = im.stamp.toSec()
            if tk > poseSplineDv.spline().t_min() and tk < poseSplineDv.spline(
            ).t_max():
                # GyroscopeError(measurement, invR, angularVelocity, bias)
                wk = poseSplineDv.angularVelocityBodyFrame(tk)
                bk = self.gyroBiasDv.toEuclideanExpression(tk, 0)
                gerr = ket.GyroscopeError(im.omega, im.omegaInvR * w, wk, bk)
                #gerr.setMEstimatorPolicy(mest)
                gyroErrors.append(gerr)
                problem.addErrorTerm(gerr)
            else:
                num_skipped = num_skipped + 1

            #update progress bar
            iProgress.sample()

        print "\r  Added {0} of {1} gyroscope error terms (skipped {2} out-of-bounds measurements)".format(
            len(self.imuData) - num_skipped, len(self.imuData), num_skipped)
        self.gyroErrors = gyroErrors
Exemple #5
0
    def addCameraErrorTerms(self,
                            problem,
                            poseSplineDv,
                            T_cN_b,
                            blakeZissermanDf=0.0,
                            timeOffsetPadding=0.0):
        print
        print "Adding camera error terms ({0})".format(self.dataset.topic)

        #progress bar
        iProgress = sm.Progress2(len(self.targetObservations))
        iProgress.sample()

        allReprojectionErrors = list()
        error_t = self.camera.reprojectionErrorType

        for obs in self.targetObservations:
            # Build a transformation expression for the time.
            frameTime = self.cameraTimeToImuTimeDv.toExpression() + obs.time(
            ).toSec() + self.timeshiftCamToImuPrior
            frameTimeScalar = frameTime.toScalar()

            #as we are applying an initial time shift outside the optimization so
            #we need to make sure that we dont add data outside the spline definition
            if frameTimeScalar <= poseSplineDv.spline().t_min(
            ) or frameTimeScalar >= poseSplineDv.spline().t_max():
                continue

            T_w_b = poseSplineDv.transformationAtTime(frameTime,
                                                      timeOffsetPadding,
                                                      timeOffsetPadding)
            T_b_w = T_w_b.inverse()

            #calibration target coords to camera N coords
            #T_b_w: from world to imu coords
            #T_cN_b: from imu to camera N coords
            T_c_w = T_cN_b * T_b_w

            #get the image and target points corresponding to the frame
            imageCornerPoints = np.array(obs.getCornersImageFrame()).T
            targetCornerPoints = np.array(obs.getCornersTargetFrame()).T

            #setup an aslam frame (handles the distortion)
            frame = self.camera.frameType()
            frame.setGeometry(self.camera.geometry)

            #corner uncertainty
            R = np.eye(2) * self.cornerUncertainty * self.cornerUncertainty
            invR = np.linalg.inv(R)

            for pidx in range(0, imageCornerPoints.shape[1]):
                #add all image points
                k = self.camera.keypointType()
                k.setMeasurement(imageCornerPoints[:, pidx])
                k.setInverseMeasurementCovariance(invR)
                frame.addKeypoint(k)

            reprojectionErrors = list()
            for pidx in range(0, imageCornerPoints.shape[1]):
                #add all target points
                targetPoint = np.insert(targetCornerPoints.transpose()[pidx],
                                        3, 1)
                p = T_c_w * aopt.HomogeneousExpression(targetPoint)

                #build and append the error term
                rerr = error_t(frame, pidx, p)

                #add blake-zisserman m-estimator
                if blakeZissermanDf > 0.0:
                    mest = aopt.BlakeZissermanMEstimator(blakeZissermanDf)
                    rerr.setMEstimatorPolicy(mest)

                problem.addErrorTerm(rerr)
                reprojectionErrors.append(rerr)

            allReprojectionErrors.append(reprojectionErrors)

            #update progress bar
            iProgress.sample()

        print "\r  Added {0} camera error terms                      ".format(
            len(self.targetObservations))
        self.allReprojectionErrors = allReprojectionErrors
Exemple #6
0
def extractCornersFromDataset(dataset,
                              detector,
                              multithreading=False,
                              numProcesses=None,
                              clearImages=True,
                              noTransformation=False):
    print("Extracting calibration target corners")
    targetObservations = []
    numImages = dataset.numImages()

    # prepare progess bar
    iProgress = sm.Progress2(numImages)
    iProgress.sample()

    if multithreading:
        if not numProcesses:
            numProcesses = max(1, multiprocessing.cpu_count() - 1)
        try:
            manager = multiprocessing.Manager()
            resultq = manager.Queue()
            manager2 = multiprocessing.Manager()
            taskq = manager2.Queue()

            for idx, (timestamp, image) in enumerate(dataset.readDataset()):
                taskq.put((idx, timestamp, image))

            plist = list()
            for pidx in range(0, numProcesses):
                detector_copy = copy.copy(detector)
                p = multiprocessing.Process(target=multicoreExtractionWrapper,
                                            args=(
                                                detector_copy,
                                                taskq,
                                                resultq,
                                                clearImages,
                                                noTransformation,
                                            ))
                p.start()
                plist.append(p)

            #wait for results
            last_done = 0
            while 1:
                if all([not p.is_alive() for p in plist]):
                    time.sleep(0.1)
                    break
                done = numImages - taskq.qsize()
                sys.stdout.flush()
                if (done - last_done) > 0:
                    iProgress.sample(done - last_done)
                last_done = done
                time.sleep(0.5)
            resultq.put('STOP')
        except Exception as e:
            raise RuntimeError(
                "Exception during multithreaded extraction: {0}".format(e))

        #get result sorted by time (=idx)
        if resultq.qsize() > 1:
            targetObservations = [[]] * (resultq.qsize() - 1)
            for lidx, data in enumerate(iter(resultq.get, 'STOP')):
                obs = data[0]
                time_idx = data[1]
                targetObservations[lidx] = (time_idx, obs)
            targetObservations = list(
                zip(*sorted(targetObservations, key=lambda tup: tup[0])))[1]
        else:
            targetObservations = []

    #single threaded implementation
    else:
        for timestamp, image in dataset.readDataset():
            if noTransformation:
                success, observation = detector.findTargetNoTransformation(
                    timestamp, np.array(image))
            else:
                success, observation = detector.findTarget(
                    timestamp, np.array(image))
            if clearImages:
                observation.clearImage()
            if success == 1:
                targetObservations.append(observation)
            iProgress.sample()

    if len(targetObservations) == 0:
        print("\r")
        sm.logFatal(
            "No corners could be extracted for camera {0}! Check the calibration target configuration and dataset."
            .format(dataset.topic))
    else:
        print(
            "\r  Extracted corners for %d images (of %d images)                              "
            % (len(targetObservations), numImages))

    #close all opencv windows that might be open
    cv2.destroyAllWindows()

    return targetObservations