Exemple #1
0
    def setup_class(cls):
        d = macrodata.load_pandas().data
        # growth rates
        d['gs_l_realinv'] = 400 * np.log(d['realinv']).diff()
        d['gs_l_realgdp'] = 400 * np.log(d['realgdp']).diff()
        d['lint'] = d['realint'].shift(1)
        d['tbilrate'] = d['tbilrate'].shift(1)

        d = d.dropna()
        cls.d = d
        endogg = d['gs_l_realinv']
        exogg = add_constant(d[['gs_l_realgdp', 'lint']])
        exogg2 = add_constant(d[['gs_l_realgdp', 'tbilrate']])
        exogg3 = add_constant(d[['gs_l_realgdp']])

        res_ols = OLS(endogg, exogg).fit()
        res_ols2 = OLS(endogg, exogg2).fit()

        res_ols3 = OLS(endogg, exogg3).fit()

        cls.res = res_ols
        cls.res2 = res_ols2
        cls.res3 = res_ols3
        cls.endog = cls.res.model.endog
        cls.exog = cls.res.model.exog
Exemple #2
0
    def setup_class(cls):
        mod1 = cls.model_cls(endog, exog, **cls.mod_kwargs)
        cls.res1 = mod1.fit(disp=False, **cls.fit_kwargs)
        cls.res1b = mod1.fit(disp=False, **cls.fit_kwargs)

        mod2 = OLS(endog, exog)
        cls.res2 = mod2.fit(disp=False, **cls.fit_kwargs)
Exemple #3
0
    def test_regression_with_tuples(self):
        i = pd.Series([1, 2, 3, 4] * 10, name="i")
        y = pd.Series([1, 2, 3, 4, 5] * 8, name="y")
        x = pd.Series([1, 2, 3, 4, 5, 6, 7, 8] * 5, name="x")

        df = pd.DataFrame(index=i.index)
        df = df.join(i)
        endo = df.join(y)
        exo = df.join(x)
        endo_groups = endo.groupby("i")
        exo_groups = exo.groupby("i")
        exo_Df = exo_groups.agg([np.sum, np.max])
        endo_Df = endo_groups.agg([np.sum, np.max])
        reg = OLS(exo_Df[[("x", "sum")]], endo_Df).fit()
        interesting_lines = []

        with warnings.catch_warnings():
            # Catch ominormal warning, not interesting here
            warnings.simplefilter("ignore")
            for line in str(reg.summary()).splitlines():
                if "('" in line:
                    interesting_lines.append(line[:38])

        desired = [
            "Dep. Variable:           ('x', 'sum') ",
            "('y', 'sum')      1.4595      0.209   ",
            "('y', 'amax')     0.2432      0.035   "
        ]

        assert sorted(desired) == sorted(interesting_lines)
Exemple #4
0
    def test_regularized_weights(self):
        np.random.seed(1432)
        exog1 = np.random.normal(size=(100, 3))
        endog1 = exog1[:, 0] + exog1[:, 1] + np.random.normal(size=100)
        exog2 = np.random.normal(size=(100, 3))
        endog2 = exog2[:, 0] + exog2[:, 1] + np.random.normal(size=100)

        exog_a = np.vstack((exog1, exog1, exog2))
        endog_a = np.concatenate((endog1, endog1, endog2))

        # Should be equivalent to exog_a, endog_a.
        exog_b = np.vstack((exog1, exog2))
        endog_b = np.concatenate((endog1, endog2))
        wgts = np.ones(200)
        wgts[0:100] = 2
        sigma = np.diag(1 / wgts)

        # TODO: parametrize?
        for L1_wt in [0, 0.5, 1]:
            for alpha in [0, 1]:
                mod1 = OLS(endog_a, exog_a)
                rslt1 = mod1.fit_regularized(L1_wt=L1_wt, alpha=alpha)

                mod2 = WLS(endog_b, exog_b, weights=wgts)
                rslt2 = mod2.fit_regularized(L1_wt=L1_wt, alpha=alpha)

                mod3 = GLS(endog_b, exog_b, sigma=sigma)
                rslt3 = mod3.fit_regularized(L1_wt=L1_wt, alpha=alpha)

                assert_almost_equal(rslt1.params, rslt2.params, decimal=3)
                assert_almost_equal(rslt1.params, rslt3.params, decimal=3)
Exemple #5
0
    def setup_class(cls):
        mod1 = cls.model_cls(endog, exog, **cls.mod_kwargs)
        cls.res1 = mod1.fit(disp=False, **cls.fit_kwargs)
        cls.res1b = mod1.fit(cov_type='nw-panel', cov_kwds=cls.cov_kwds)

        mod2 = OLS(endog, exog)
        cls.res2 = mod2.fit(disp=False, **cls.fit_kwargs)
Exemple #6
0
 def setup_class(cls):
     R = np.zeros(7)
     R[4:6] = [1, -1]
     data = datasets.longley.load(as_pandas=False)
     data.exog = add_constant(data.exog, prepend=False)
     res1 = OLS(data.endog, data.exog).fit()
     cls.Ttest1 = res1.t_test(R)
Exemple #7
0
    def setup_class(cls):
        data = datasets.longley.load(as_pandas=False)
        res1 = OLS(data.endog, data.exog).fit()
        cls.res1 = res1
        #cls.res2.wresid = res1.wresid  # workaround hack

        res_qr = OLS(data.endog, data.exog).fit(method="qr")
        cls.res_qr = res_qr
Exemple #8
0
def test_const_indicator():
    np.random.seed(12345)
    X = np.random.randint(0, 3, size=30)
    X = categorical(X, drop=True)
    y = np.dot(X, [1., 2., 3.]) + np.random.normal(size=30)
    modc = OLS(y, add_constant(X[:, 1:], prepend=True)).fit()
    mod = OLS(y, X, hasconst=True).fit()
    assert_almost_equal(modc.rsquared, mod.rsquared, 12)
Exemple #9
0
    def setup_class(cls):
        mod1 = cls.model_cls(endog, exog, **cls.mod_kwargs)
        cls.res1 = mod1.fit(**cls.fit_kwargs)

        mod2 = OLS(endog, exog)
        # check kernel as string
        kwds2 = {'kernel': 'uniform', 'maxlags': 2}
        cls.res2 = mod2.fit(cov_type=cls.cov_type, cov_kwds=kwds2)
Exemple #10
0
def test_summary_as_latex():
    # GH#734
    dta = datasets.longley.load_pandas()
    X = dta.exog
    X["constant"] = 1
    y = dta.endog
    with warnings.catch_warnings(record=True):
        res = OLS(y, X).fit()
        table = res.summary().as_latex()

    # replace the date and time
    table = re.sub(r"(?<=\n\\textbf\{Date:\}             &).+?&",
                   r" Sun, 07 Apr 2013 &", table)
    table = re.sub(r"(?<=\n\\textbf\{Time:\}             &).+?&",
                   r"     13:46:07     &", table)

    expected = textwrap.dedent("""
    \\begin{center}
    \\begin{tabular}{lclc}
    \\toprule
    \\textbf{Dep. Variable:}    &      TOTEMP      & \\textbf{  R-squared:         } &     0.995   \\\\
    \\textbf{Model:}            &       OLS        & \\textbf{  Adj. R-squared:    } &     0.992   \\\\
    \\textbf{Method:}           &  Least Squares   & \\textbf{  F-statistic:       } &     330.3   \\\\
    \\textbf{Date:}             & Sun, 07 Apr 2013 & \\textbf{  Prob (F-statistic):} &  4.98e-10   \\\\
    \\textbf{Time:}             &     13:46:07     & \\textbf{  Log-Likelihood:    } &   -109.62   \\\\
    \\textbf{No. Observations:} &          16      & \\textbf{  AIC:               } &     233.2   \\\\
    \\textbf{Df Residuals:}     &           9      & \\textbf{  BIC:               } &     238.6   \\\\
    \\textbf{Df Model:}         &           6      & \\textbf{                     } &             \\\\
    \\bottomrule
    \\end{tabular}
    \\begin{tabular}{lcccccc}
                      & \\textbf{coef} & \\textbf{std err} & \\textbf{t} & \\textbf{P$>$$|$t$|$} & \\textbf{[0.025} & \\textbf{0.975]}  \\\\
    \\midrule
    \\textbf{GNPDEFL}  &      15.0619  &       84.915     &     0.177  &         0.863        &     -177.029    &      207.153     \\\\
    \\textbf{GNP}      &      -0.0358  &        0.033     &    -1.070  &         0.313        &       -0.112    &        0.040     \\\\
    \\textbf{UNEMP}    &      -2.0202  &        0.488     &    -4.136  &         0.003        &       -3.125    &       -0.915     \\\\
    \\textbf{ARMED}    &      -1.0332  &        0.214     &    -4.822  &         0.001        &       -1.518    &       -0.549     \\\\
    \\textbf{POP}      &      -0.0511  &        0.226     &    -0.226  &         0.826        &       -0.563    &        0.460     \\\\
    \\textbf{YEAR}     &    1829.1515  &      455.478     &     4.016  &         0.003        &      798.788    &     2859.515     \\\\
    \\textbf{constant} &   -3.482e+06  &      8.9e+05     &    -3.911  &         0.004        &     -5.5e+06    &    -1.47e+06     \\\\
    \\bottomrule
    \\end{tabular}
    \\begin{tabular}{lclc}
    \\textbf{Omnibus:}       &  0.749 & \\textbf{  Durbin-Watson:     } &    2.559  \\\\
    \\textbf{Prob(Omnibus):} &  0.688 & \\textbf{  Jarque-Bera (JB):  } &    0.684  \\\\
    \\textbf{Skew:}          &  0.420 & \\textbf{  Prob(JB):          } &    0.710  \\\\
    \\textbf{Kurtosis:}      &  2.434 & \\textbf{  Cond. No.          } & 4.86e+09  \\\\
    \\bottomrule
    \\end{tabular}
    %\\caption{OLS Regression Results}
    \\end{center}

    Warnings: \\newline
     [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. \\newline
     [2] The condition number is large, 4.86e+09. This might indicate that there are \\newline
     strong multicollinearity or other numerical problems.""").strip()  # noqa:E501

    assert_equal(table, expected)
Exemple #11
0
    def setup_class(cls):
        # check kernel specified as string
        mod1 = cls.model_cls(endog, exog, **cls.mod_kwargs)
        cls.res1 = mod1.fit(disp=False, **cls.fit_kwargs)

        mod2 = OLS(endog, exog)
        cls.res2 = mod2.fit(disp=False,
                            cov_type=cls.cov_type,
                            cov_kwds={'maxlags': 2})
Exemple #12
0
def test_conf_int_single_regressor():
    # GH#706 single-regressor model (i.e. no intercept) with 1D exog
    # should get passed to DataFrame for conf_int
    y = pd.Series(np.random.randn(10))
    x = pd.Series(np.ones(10))
    res = OLS(y, x).fit()
    conf_int = res.conf_int()
    assert conf_int.shape == (1, 2)
    assert isinstance(conf_int, pd.DataFrame)
Exemple #13
0
    def setup_class(cls):
        mod1 = cls.model_cls(endog, exog, **cls.mod_kwargs)
        cls.res1 = mod1.fit(disp=False, **cls.fit_kwargs)

        mod2 = OLS(endog, exog)
        cls.res2 = mod2.fit(disp=False, **cls.fit_kwargs)

        # for debugging
        cls.res3 = mod2.fit(cov_type=cls.cov_type, cov_kwds={'maxlags': 2})
Exemple #14
0
 def setup_class(cls):
     data = datasets.longley.load(as_pandas=False)
     data.exog = add_constant(data.exog, prepend=False)
     res1 = OLS(data.endog, data.exog).fit()
     R2 = [[0, 1, -1, 0, 0, 0, 0],
           [0, 0, 0, 0, 1, -1, 0]]
     cls.Ftest1 = res1.f_test(R2)
     hyp = 'x2 = x3, x5 = x6'
     cls.NewFtest1 = res1.f_test(hyp)
Exemple #15
0
 def setup_class(cls):
     data = datasets.longley.load(as_pandas=False)
     data.exog = add_constant(data.exog, prepend=False)
     res1 = OLS(data.endog, data.exog).fit()
     R = np.array([[0, 1, 1, 0, 0, 0, 0],
                   [0, 1, 0, 1, 0, 0, 0],
                   [0, 1, 0, 0, 0, 0, 0],
                   [0, 0, 0, 0, 1, 0, 0],
                   [0, 0, 0, 0, 0, 1, 0]])
     q = np.array([0, 0, 0, 1, 0])
     cls.Ftest1 = res1.f_test((R, q))
Exemple #16
0
def test_outlier_influence_funcs(reset_randomstate):
    x = add_constant(np.random.randn(10, 2))
    y = x.sum(1) + np.random.randn(10)
    res = OLS(y, x).fit()
    out_05 = oi.summary_table(res)
    # GH#3344 : Check alpha has an effect
    out_01 = oi.summary_table(res, alpha=0.01)
    assert np.all(out_01[1][:, 6] <= out_05[1][:, 6])
    assert np.all(out_01[1][:, 7] >= out_05[1][:, 7])

    res2 = OLS(y, x[:, 0]).fit()
    oi.summary_table(res2, alpha=0.05)
    infl = res2.get_influence()
    infl.summary_table()
Exemple #17
0
 def setup(self):
     model = OLS(self.res1.model.endog, self.res1.model.exog)
     res_ols = model.fit(cov_type='cluster',
                         cov_kwds=dict(groups=self.groups,
                                       use_correction=False,
                                       use_t=False,
                                       df_correction=True))
     self.res3 = self.res1
     self.res1 = res_ols
     self.bse_robust = res_ols.bse
     self.cov_robust = res_ols.cov_params()
     cov1 = sw.cov_cluster(self.res1, self.groups, use_correction=False)
     se1 = sw.se_cov(cov1)
     self.bse_robust2 = se1
     self.cov_robust2 = cov1
Exemple #18
0
 def setup_class(cls):
     np.random.seed(54321)
     cls.endog_n_ = np.random.uniform(0, 20, size=30)
     cls.endog_n_one = cls.endog_n_[:, None]
     cls.exog_n_ = np.random.uniform(0, 20, size=30)
     cls.exog_n_one = cls.exog_n_[:, None]
     cls.degen_exog = cls.exog_n_one[:-1]
     cls.mod1 = OLS(cls.endog_n_one, cls.exog_n_one)
     cls.mod1.df_model += 1
     cls.res1 = cls.mod1.fit()
     # Note that these are created for every subclass..
     # A little extra overhead probably
     cls.mod2 = OLS(cls.endog_n_one, cls.exog_n_one)
     cls.mod2.df_model += 1
     cls.res2 = cls.mod2.fit()
Exemple #19
0
 def test_missing(self):
     data = datasets.longley.load(as_pandas=False)
     data.exog = add_constant(data.exog, prepend=False)
     data.endog[[3, 7, 14]] = np.nan
     mod = OLS(data.endog, data.exog, missing='drop')
     assert mod.endog.shape[0] == 13
     assert mod.exog.shape[0] == 13
Exemple #20
0
def test_influence_wrapped():
    d = macrodata.load_pandas().data
    # growth rates
    gs_l_realinv = 400 * np.log(d['realinv']).diff().dropna()
    gs_l_realgdp = 400 * np.log(d['realgdp']).diff().dropna()
    lint = d['realint'][:-1]

    # re-index these because they won't conform to lint
    gs_l_realgdp.index = lint.index
    gs_l_realinv.index = lint.index

    data = dict(const=np.ones_like(lint), lint=lint, lrealgdp=gs_l_realgdp)
    # order is important
    exog = pd.DataFrame(data, columns=['const', 'lrealgdp', 'lint'])

    res = OLS(gs_l_realinv, exog).fit()

    # basic
    # already tested
    # cov.scaled and cov.unscaled have already been tested
    # TODO: check that above is correct;
    #       comment is (roughly) copied from upstream

    infl = oi.OLSInfluence(res)

    # smoke test just to make sure it works, results separately tested
    df = infl.summary_frame()
    assert isinstance(df, pd.DataFrame)

    # this test is slow
    path = os.path.join(cur_dir, "results", "influence_lsdiag_R.json")
    with open(path, 'r') as fp:
        lsdiag = json.load(fp)

    c0, c1 = infl.cooks_distance  # TODO: what's c1, it's pvalues? -ss

    # NOTE: we get a hard-cored 5 decimals with pandas testing
    assert_almost_equal(c0, lsdiag['cooks'], 14)
    assert_almost_equal(infl.hat_matrix_diag, (lsdiag['hat']), 14)
    assert_almost_equal(infl.resid_studentized_internal,
                        lsdiag['std.res'], 14)

    # slow
    dffits, dffth = infl.dffits
    assert_almost_equal(dffits, lsdiag['dfits'], 14)
    assert_almost_equal(infl.resid_studentized_external,
                        lsdiag['stud.res'], 14)

    fn = os.path.join(cur_dir, "results", "influence_measures_R.csv")
    infl_r = pd.read_csv(fn, index_col=0)
    # not used yet:
    # fn = os.path.join(cur_dir, "results", "influence_measures_bool_R.csv")
    # conv = lambda s: 1 if s == 'TRUE' else 0
    #infl_bool_r  = pd.read_csv(fn, index_col=0,
    #                           converters=dict(zip(lrange(7), [conv]*7)))
    infl_r2 = np.asarray(infl_r)
    # TODO: finish wrapping this stuff
    assert_almost_equal(infl.dfbetas, infl_r2[:, :3], decimal=13)
    assert_almost_equal(infl.cov_ratio, infl_r2[:, 4], decimal=14)
Exemple #21
0
def test_formula_missing_cat():
    # GH#805
    dta = datasets.grunfeld.load_pandas().data
    dta.loc[dta.index[0], 'firm'] = np.nan
    formula = 'value ~ invest + capital + firm + year'

    mod = OLS.from_formula(formula=formula, data=dta.dropna())
    res = mod.fit()

    mod2 = OLS.from_formula(formula=formula, data=dta)
    res2 = mod2.fit()

    assert_almost_equal(res.params.values,
                        res2.params.values)

    with pytest.raises(PatsyError):
        OLS.from_formula(formula, data=dta, missing='raise')
Exemple #22
0
    def setup_class(cls):
        d2 = macrodata.load_pandas().data
        g_gdp = 400 * np.diff(np.log(d2['realgdp'].values))
        g_inv = 400 * np.diff(np.log(d2['realinv'].values))
        exogg = add_constant(np.c_[g_gdp, d2['realint'][:-1].values],
                             prepend=False)

        cls.res1 = OLS(g_inv, exogg).fit()
Exemple #23
0
    def setup_class(cls):
        # TODO: Test HAC method
        X = np.random.randn(100, 3)
        b = np.ones((3, 1))
        e = np.random.randn(100, 1)
        y = np.dot(X, b) + e
        # Cases?
        # Homoskedastic
        # HC0
        cls.res1_full = OLS(y, X).fit()
        cls.res1_restricted = OLS(y, X[:, 0]).fit()

        cls.res2_full = cls.res1_full.get_robustcov_results('HC0')
        cls.res2_restricted = cls.res1_restricted.get_robustcov_results('HC0')

        cls.X = X
        cls.Y = y
Exemple #24
0
 def setup_class(cls):
     data = datasets.longley.load(as_pandas=False)
     data.exog = add_constant(data.exog, prepend=False)
     cls.res1 = OLS(data.endog, data.exog).fit()
     R = np.identity(7)
     cls.Ttest = cls.res1.t_test(R)
     hyp = 'x1 = 0, x2 = 0, x3 = 0, x4 = 0, x5 = 0, x6 = 0, const = 0'
     cls.NewTTest = cls.res1.t_test(hyp)
Exemple #25
0
    def test_recursive_residuals(self):
        reccumres_standardize = np.array([
            -2.151, -3.748, -3.114, -3.096, -1.865, -2.230, -1.194, -3.500,
            -3.638, -4.447, -4.602, -4.631, -3.999, -4.830, -5.429, -5.435,
            -6.554, -8.093, -8.567, -7.532, -7.079, -8.468, -9.320, -12.256,
            -11.932, -11.454, -11.690, -11.318, -12.665, -12.842, -11.693,
            -10.803, -12.113, -12.109, -13.002, -11.897, -10.787, -10.159,
            -9.038, -9.007, -8.634, -7.552, -7.153, -6.447, -5.183, -3.794,
            -3.511, -3.979, -3.236, -3.793, -3.699, -5.056, -5.724, -4.888,
            -4.309, -3.688, -3.918, -3.735, -3.452, -2.086, -6.520, -7.959,
            -6.760, -6.855, -6.032, -4.405, -4.123, -4.075, -3.235, -3.115,
            -3.131, -2.986, -1.813, -4.824, -4.424, -4.796, -4.000, -3.390,
            -4.485, -4.669, -4.560, -3.834, -5.507, -3.792, -2.427, -1.756,
            -0.354, 1.150, 0.586, 0.643, 1.773, -0.830, -0.388, 0.517, 0.819,
            2.240, 3.791, 3.187, 3.409, 2.431, 0.668, 0.957, -0.928, 0.327,
            -0.285, -0.625, -2.316, -1.986, -0.744, -1.396, -1.728, -0.646,
            -2.602, -2.741, -2.289, -2.897, -1.934, -2.532, -3.175, -2.806,
            -3.099, -2.658, -2.487, -2.515, -2.224, -2.416, -1.141, 0.650,
            -0.947, 0.725, 0.439, 0.885, 2.419, 2.642, 2.745, 3.506, 4.491,
            5.377, 4.624, 5.523, 6.488, 6.097, 5.390, 6.299, 6.656, 6.735,
            8.151, 7.260, 7.846, 8.771, 8.400, 8.717, 9.916, 9.008, 8.910,
            8.294, 8.982, 8.540, 8.395, 7.782, 7.794, 8.142, 8.362, 8.400,
            7.850, 7.643, 8.228, 6.408, 7.218, 7.699, 7.895, 8.725, 8.938,
            8.781, 8.350, 9.136, 9.056, 10.365, 10.495, 10.704, 10.784,
            10.275, 10.389, 11.586, 11.033, 11.335, 11.661, 10.522, 10.392,
            10.521, 10.126, 9.428, 9.734, 8.954, 9.949, 10.595, 8.016, 6.636,
            6.975])

        rr = diagnostic.recursive_olsresiduals(self.res, skip=3, alpha=0.95)
        np.testing.assert_equal(np.round(rr[5][1:], 3),
                                reccumres_standardize)  # extra zero in front
        assert_almost_equal(rr[3][4:], np.diff(reccumres_standardize), 3)
        assert_almost_equal(rr[4][3:].std(ddof=1), 10.7242, decimal=4)

        # regression number, visually checked with graph from gretl
        ub0 = np.array([13.37318571, 13.50758959, 13.64199346, 13.77639734,
                        13.91080121])
        ub1 = np.array([39.44753774, 39.58194162, 39.7163455, 39.85074937,
                        39.98515325])
        lb, ub = rr[6]
        assert_almost_equal(ub[:5], ub0, decimal=7)
        assert_almost_equal(lb[:5], -ub0, decimal=7)
        assert_almost_equal(ub[-5:], ub1, decimal=7)
        assert_almost_equal(lb[-5:], -ub1, decimal=7)

        # test a few values with explicit OLS
        endog = self.res.model.endog
        exog = self.res.model.exog
        params = []
        ypred = []
        for i in range(3, 10):
            resi = OLS(endog[:i], exog[:i]).fit()
            ypred.append(resi.model.predict(resi.params, exog[i]))
            params.append(resi.params)
        assert_almost_equal(rr[2][3:10], ypred, decimal=12)
        assert_almost_equal(rr[0][3:10], endog[3:10] - ypred, decimal=12)
        assert_almost_equal(rr[1][2:9], params, decimal=12)
Exemple #26
0
 def test_norm_resid_zero_variance(self):
     with warnings.catch_warnings(record=True):
         y = self.res1.model.endog
         res = OLS(y, y).fit()
         assert_allclose(res.scale, 0,
                         atol=1e-20)
         assert_allclose(res.wresid,
                         res.resid_pearson,
                         atol=5e-11)
Exemple #27
0
 def test_rsquared_adj_overfit(self):
     # Test that if df_resid = 0, rsquared_adj = 0.
     # This is a regression test for user issue:
     # GH#868
     with warnings.catch_warnings(record=True):
         x = np.random.randn(5)
         y = np.random.randn(5, 6)
         results = OLS(x, y).fit()
         rsquared_adj = results.rsquared_adj
         assert_equal(rsquared_adj, np.nan)
Exemple #28
0
 def setup_class(cls):
     super(TestGLS_large_data, cls).setup_class()
     nobs = 1000
     y = np.random.randn(nobs, 1)
     X = np.random.randn(nobs, 20)
     sigma = np.ones_like(y)
     cls.gls_res = GLS(y, X, sigma=sigma).fit()
     cls.gls_res_scalar = GLS(y, X, sigma=1).fit()
     cls.gls_res_none = GLS(y, X).fit()
     cls.ols_res = OLS(y, X).fit()
Exemple #29
0
    def setup_class(cls):
        nobs, k_exog = 100, 5
        np.random.seed(987125)
        x = np.random.randn(nobs, k_exog - 1)
        x = add_constant(x)

        y_true = x.sum(1) / 2
        y = y_true + 2 * np.random.randn(nobs)
        cls.endog = y
        cls.exog = x
        cls.idx_p_uc = np.array(cls.idx_uc)
        cls.exogc = xc = x[:, cls.idx_uc]
        mod_ols_c = OLS(y - 0.5 * x[:, 1], xc)
        mod_ols_c.exog_names[:] = ['const', 'x2', 'x3', 'x4']

        cls.mod2 = mod_ols_c
        cls.res2 = cls.mod2.fit(**cls.fit_kwargs)

        cls.init()
Exemple #30
0
 def setup_class(cls):
     data = datasets.longley.load(as_pandas=False)
     data.exog = add_constant(data.exog, prepend=False)
     ols_res = OLS(data.endog, data.exog).fit()
     gls_res = GLS(data.endog, data.exog).fit()
     gls_res_scalar = GLS(data.endog, data.exog, sigma=1)
     cls.endog = data.endog
     cls.exog = data.exog
     cls.res1 = gls_res
     cls.res2 = ols_res
     cls.res3 = gls_res_scalar  # TODO: Do something with this?