Exemple #1
0
    def test_3d_error(self):
        data = np.array(2)
        with pytest.raises(ValueError):
            tsatools.lagmat2ds(data, 5)

        data = np.zeros((100, 2, 2))
        with pytest.raises(ValueError):
            tsatools.lagmat2ds(data, 5)
Exemple #2
0
    def test_lagmat2ds_numpy(self):
        data = self.macro_df
        npdata = data.values
        lagmat = tsatools.lagmat2ds(npdata, 2)
        expected = self._prepare_expected(npdata, 2)
        assert_array_equal(lagmat, expected)

        lagmat = tsatools.lagmat2ds(npdata[:, :2], 3)
        expected = self._prepare_expected(npdata[:, :2], 3)
        assert_array_equal(lagmat, expected)

        npdata = self.series.values
        lagmat = tsatools.lagmat2ds(npdata, 5)
        expected = self._prepare_expected(npdata[:, None], 5)
        assert_array_equal(lagmat, expected)
Exemple #3
0
    def test_lagmat2ds_pandas(self):
        data = self.macro_df
        lagmat = tsatools.lagmat2ds(data, 2)
        expected = self._prepare_expected(data.values, 2)
        assert_array_equal(lagmat, expected)

        lagmat = tsatools.lagmat2ds(data.iloc[:, :2], 3, trim='both')
        expected = self._prepare_expected(data.values[:, :2], 3)
        expected = expected[3:]
        assert_array_equal(lagmat, expected)

        data = self.series
        lagmat = tsatools.lagmat2ds(data, 5)
        expected = self._prepare_expected(data.values[:, None], 5)
        assert_array_equal(lagmat, expected)
Exemple #4
0
    def test_lagmat2ds_use_pandas(self):
        data = self.macro_df
        lagmat = tsatools.lagmat2ds(data, 2, use_pandas=True)
        expected = self._prepare_expected(data.values, 2)
        cols = []
        for c in data:
            for lags in range(3):
                if lags == 0:
                    cols.append(c)
                else:
                    cols.append(c + '.L.' + str(lags))
        expected = pd.DataFrame(expected, index=data.index, columns=cols)
        tm.assert_frame_equal(lagmat, expected)

        lagmat = tsatools.lagmat2ds(data.iloc[:, :2],
                                    3,
                                    use_pandas=True,
                                    trim='both')
        expected = self._prepare_expected(data.values[:, :2], 3)
        cols = []
        for c in data.iloc[:, :2]:
            for lags in range(4):
                if lags == 0:
                    cols.append(c)
                else:
                    cols.append(c + '.L.' + str(lags))
        expected = pd.DataFrame(expected, index=data.index, columns=cols)
        expected = expected.iloc[3:]
        tm.assert_frame_equal(lagmat, expected)

        data = self.series
        lagmat = tsatools.lagmat2ds(data, 5, use_pandas=True)
        expected = self._prepare_expected(data.values[:, None], 5)

        cols = []
        c = data.name
        for lags in range(6):
            if lags == 0:
                cols.append(c)
            else:
                cols.append(c + '.L.' + str(lags))

        expected = pd.DataFrame(expected, index=data.index, columns=cols)
        tm.assert_frame_equal(lagmat, expected)
Exemple #5
0
def grangercausalitytests(x, maxlag, addconst=True, verbose=True):
    """four tests for granger non causality of 2 timeseries

    all four tests give similar results
    `params_ftest` and `ssr_ftest` are equivalent based on F test which is
    identical to lmtest:grangertest in R

    Parameters
    ----------
    x : array, 2d
        data for test whether the time series in the second column Granger
        causes the time series in the first column
    maxlag : integer
        the Granger causality test results are calculated for all lags up to
        maxlag
    verbose : bool
        print results if true

    Returns
    -------
    results : dictionary
        all test results, dictionary keys are the number of lags. For each
        lag the values are a tuple, with the first element a dictionary with
        teststatistic, pvalues, degrees of freedom, the second element are
        the OLS estimation results for the restricted model, the unrestricted
        model and the restriction (contrast) matrix for the parameter f_test.

    Notes
    -----
    TODO: convert to class and attach results properly

    The Null hypothesis for grangercausalitytests is that the time series in
    the second column, x2, does NOT Granger cause the time series in the first
    column, x1. Grange causality means that past values of x2 have a
    statistically significant effect on the current value of x1, taking past
    values of x1 into account as regressors. We reject the null hypothesis
    that x2 does not Granger cause x1 if the pvalues are below a desired size
    of the test.

    The null hypothesis for all four test is that the coefficients
    corresponding to past values of the second time series are zero.

    'params_ftest', 'ssr_ftest' are based on F distribution

    'ssr_chi2test', 'lrtest' are based on chi-square distribution

    References
    ----------
    http://en.wikipedia.org/wiki/Granger_causality
    Greene: Econometric Analysis
    """
    if verbose:  # pragma: no cover
        raise NotImplementedError("Option `verbose` from upstream is "
                                  "not supported")
    x = np.asarray(x)

    if x.shape[0] <= 3 * maxlag + int(addconst):
        raise ValueError(
            "Insufficient observations. Maximum allowable "
            "lag is {0}".format(int((x.shape[0] - int(addconst)) / 3) - 1))

    resli = {}

    for mlg in range(1, maxlag + 1):
        result = {}
        mxlg = mlg

        # create lagmat of both time series
        dta = lagmat2ds(x, mxlg, trim='both', dropex=1)

        if addconst:
            dtaown = add_constant(dta[:, 1:(mxlg + 1)], prepend=False)
            dtajoint = add_constant(dta[:, 1:], prepend=False)
        else:
            # TODO: Whats intended here?
            raise NotImplementedError
            # dtaown = dta[:, 1:mxlg]
            # dtajoint = dta[:, 1:]

        # Run ols on both models without and with lags of second variable
        res2down = OLS(dta[:, 0], dtaown).fit()
        res2djoint = OLS(dta[:, 0], dtajoint).fit()

        # for ssr based tests see:
        # http://support.sas.com/rnd/app/examples/ets/granger/index.htm
        # the other tests are made-up

        # Granger Causality test using ssr (F statistic)
        fgc1 = ((res2down.ssr - res2djoint.ssr) / res2djoint.ssr / mxlg *
                res2djoint.df_resid)

        result['ssr_ftest'] = (fgc1, stats.f.sf(fgc1, mxlg,
                                                res2djoint.df_resid),
                               res2djoint.df_resid, mxlg)

        # Granger Causality test using ssr (ch2 statistic)
        fgc2 = res2down.nobs * (res2down.ssr - res2djoint.ssr) / res2djoint.ssr
        result['ssr_chi2test'] = (fgc2, stats.chi2.sf(fgc2, mxlg), mxlg)

        # likelihood ratio test pvalue:
        lr = -2 * (res2down.llf - res2djoint.llf)
        result['lrtest'] = (lr, stats.chi2.sf(lr, mxlg), mxlg)

        # F test that all lag coefficients of exog are zero
        rconstr = np.column_stack((np.zeros(
            (mxlg, mxlg)), np.eye(mxlg, mxlg), np.zeros((mxlg, 1))))
        ftres = res2djoint.f_test(rconstr)
        result['params_ftest'] = (np.squeeze(ftres.fvalue)[()],
                                  np.squeeze(ftres.pvalue)[()], ftres.df_denom,
                                  ftres.df_num)

        resli[mxlg] = (result, [res2down, res2djoint, rconstr])

    return resli