Exemple #1
0
        def test_simple_classification(self):
            """
            simple LibSvmClassifier test - 2-class

            Test libSVM classification functionality using random constructed
            data, training the y=0.5 split
            """
            DIM = 2
            N = 1000
            POS_LABEL = 'positive'
            NEG_LABEL = 'negative'
            p = multiprocessing.pool.ThreadPool()
            d_factory = DescriptorElementFactory(DescriptorMemoryElement, {})
            c_factory = ClassificationElementFactory(
                MemoryClassificationElement, {})

            def make_element(argtup):
                (i, v) = argtup
                d = d_factory.new_descriptor('test', i)
                d.set_vector(v)
                return d

            # Constructing artificial descriptors
            x = numpy.random.rand(N, DIM)
            x_pos = x[x[:, 1] <= 0.45]
            x_neg = x[x[:, 1] >= 0.55]

            d_pos = p.map(make_element, enumerate(x_pos))
            d_neg = p.map(make_element, enumerate(x_neg, start=N // 2))

            # Create/Train test classifier
            classifier = LibSvmClassifier(
                train_params={
                    '-t': 0,  # linear kernel
                    '-b': 1,  # enable probability estimates
                    '-c': 2,  # SVM-C parameter C
                    '-q': '',  # quite mode
                },
                normalize=None,  # DO NOT normalize descriptors
            )
            classifier.train({POS_LABEL: d_pos, NEG_LABEL: d_neg})

            # Test classifier
            x = numpy.random.rand(N, DIM)
            x_pos = x[x[:, 1] <= 0.45]
            x_neg = x[x[:, 1] >= 0.55]

            d_pos = p.map(make_element, enumerate(x_pos, N))
            d_neg = p.map(make_element, enumerate(x_neg, N + N // 2))

            d_pos_sync = {}  # for comparing to async
            for d in d_pos:
                c = classifier.classify(d, c_factory)
                ntools.assert_equal(
                    c.max_label(), POS_LABEL,
                    "Found False positive: %s :: %s" %
                    (d.vector(), c.get_classification()))
                d_pos_sync[d] = c

            d_neg_sync = {}
            for d in d_neg:
                c = classifier.classify(d, c_factory)
                ntools.assert_equal(
                    c.max_label(), NEG_LABEL,
                    "Found False negative: %s :: %s" %
                    (d.vector(), c.get_classification()))
                d_neg_sync[d] = c

            # test that async classify produces the same results
            # -- d_pos
            m_pos = classifier.classify_async(d_pos, c_factory)
            ntools.assert_equal(
                m_pos, d_pos_sync,
                "Async computation of pos set did not yield "
                "the same results as synchronous "
                "classification.")
            # -- d_neg
            m_neg = classifier.classify_async(d_neg, c_factory)
            ntools.assert_equal(
                m_neg, d_neg_sync,
                "Async computation of neg set did not yield "
                "the same results as synchronous "
                "classification.")
            # -- combined -- threaded
            combined_truth = dict(d_pos_sync.items())
            combined_truth.update(d_neg_sync)
            m_combined = classifier.classify_async(
                d_pos + d_neg,
                c_factory,
                use_multiprocessing=False,
            )
            ntools.assert_equal(
                m_combined, combined_truth,
                "Async computation of all test descriptors "
                "did not yield the same results as "
                "synchronous classification.")
            # -- combined -- multiprocess
            m_combined = classifier.classify_async(
                d_pos + d_neg,
                c_factory,
                use_multiprocessing=True,
            )
            ntools.assert_equal(
                m_combined, combined_truth,
                "Async computation of all test descriptors "
                "(mixed order) did not yield the same results "
                "as synchronous classification.")

            # Closing resources
            p.close()
            p.join()
Exemple #2
0
        def test_no_save_model_pickle(self):
            # Test model preservation across pickling even without model cache
            # file paths set.
            classifier = LibSvmClassifier(
                train_params={
                    '-t': 0,  # linear kernel
                    '-b': 1,  # enable probability estimates
                    '-c': 2,  # SVM-C parameter C
                    '-q': '',  # quite mode
                },
                normalize=None,  # DO NOT normalize descriptors
            )
            ntools.assert_true(classifier.svm_model is None)
            # Empty model should not trigger __LOCAL__ content in pickle
            ntools.assert_not_in('__LOCAL__', classifier.__getstate__())
            _ = cPickle.loads(cPickle.dumps(classifier))

            # train arbitrary model (same as ``test_simple_classification``)
            DIM = 2
            N = 1000
            POS_LABEL = 'positive'
            NEG_LABEL = 'negative'
            d_factory = DescriptorElementFactory(DescriptorMemoryElement, {})
            c_factory = ClassificationElementFactory(
                MemoryClassificationElement, {})

            def make_element(argtup):
                (i, v) = argtup
                d = d_factory.new_descriptor('test', i)
                d.set_vector(v)
                return d

            # Constructing artificial descriptors
            x = numpy.random.rand(N, DIM)
            x_pos = x[x[:, 1] <= 0.45]
            x_neg = x[x[:, 1] >= 0.55]
            p = multiprocessing.pool.ThreadPool()
            d_pos = p.map(make_element, enumerate(x_pos))
            d_neg = p.map(make_element, enumerate(x_neg, start=N // 2))
            p.close()
            p.join()

            # Training
            classifier.train({POS_LABEL: d_pos, NEG_LABEL: d_neg})

            # Test original classifier
            t_v = numpy.random.rand(DIM)
            t = d_factory.new_descriptor('query', 0)
            t.set_vector(t_v)
            c_expected = classifier.classify(t, c_factory)

            # Should see __LOCAL__ content in pickle state now
            p_state = classifier.__getstate__()
            ntools.assert_in('__LOCAL__', p_state)
            ntools.assert_in('__LOCAL_LABELS__', p_state)
            ntools.assert_in('__LOCAL_MODEL__', p_state)
            ntools.assert_true(len(p_state['__LOCAL_LABELS__']) > 0)
            ntools.assert_true(len(p_state['__LOCAL_MODEL__']) > 0)

            # Restored classifier should classify the same test descriptor the
            # same
            #: :type: LibSvmClassifier
            classifier2 = cPickle.loads(cPickle.dumps(classifier))
            c_post_pickle = classifier2.classify(t, c_factory)
            # There may be floating point error, so extract actual confidence
            # values and check post round
            c_pp_positive = c_post_pickle[POS_LABEL]
            c_pp_negative = c_post_pickle[NEG_LABEL]
            c_e_positive = c_expected[POS_LABEL]
            c_e_negative = c_expected[NEG_LABEL]
            ntools.assert_almost_equal(c_e_positive, c_pp_positive, 5)
            ntools.assert_almost_equal(c_e_negative, c_pp_negative, 5)
Exemple #3
0
        def test_simple_multiclass_classification(self):
            """
            Test libSVM classification functionality using random constructed
            data, training the y=0.33 and y=.66 split
            """
            DIM = 2
            N = 1000
            P1_LABEL = 'p1'
            P2_LABEL = 'p2'
            p = multiprocessing.pool.ThreadPool()
            d_factory = DescriptorElementFactory(DescriptorMemoryElement, {})
            c_factory = ClassificationElementFactory(MemoryClassificationElement, {})
            di = 0

            def make_element((i, v)):
                d = d_factory.new_descriptor('test', i)
                d.set_vector(v)
                return d

            # Constructing artificial descriptors
            x = numpy.random.rand(N, DIM)
            x_p1 = x[x[:, 1] <= 0.30]
            x_p2 = x[(x[:, 1] >= 0.36) & (x[:, 1] <= 0.63)]
            x_neg = x[x[:, 1] >= 0.69]

            d_p1 = p.map(make_element, enumerate(x_p1, di))
            di += len(d_p1)
            d_p2 = p.map(make_element, enumerate(x_p2, di))
            di += len(d_p2)
            d_neg = p.map(make_element, enumerate(x_neg, di))
            di += len(d_neg)

            # Create/Train test classifier
            classifier = LibSvmClassifier(
                train_params={
                    '-t': 0,  # linear kernel
                    '-b': 1,  # enable probability estimates
                    '-c': 2,  # SVM-C parameter C
                    '-q': ''  # quite mode
                },
                normalize=None,  # DO NOT normalize descriptors
            )
            classifier.train({P1_LABEL: d_p1, P2_LABEL: d_p2}, d_neg)

            # Test classifier
            x = numpy.random.rand(N, DIM)
            x_p1 = x[x[:, 1] <= 0.30]
            x_p2 = x[(x[:, 1] >= 0.36) & (x[:, 1] <= 0.63)]
            x_neg = x[x[:, 1] >= 0.69]

            d_p1 = p.map(make_element, enumerate(x_p1, di))
            di += len(d_p1)
            d_p2 = p.map(make_element, enumerate(x_p2, di))
            di += len(d_p2)
            d_neg = p.map(make_element, enumerate(x_neg, di))
            di += len(d_neg)

            for d in d_p1:
                c = classifier.classify(d, c_factory)
                ntools.assert_equal(c.max_label(),
                                    P1_LABEL,
                                    "Incorrect %s label: %s :: %s" %
                                    (P1_LABEL, d.vector(),
                                     c.get_classification()))
            for d in d_p2:
                c = classifier.classify(d, c_factory)
                ntools.assert_equal(c.max_label(),
                                    P2_LABEL,
                                    "Incorrect %s label: %s :: %s" %
                                    (P2_LABEL, d.vector(),
                                     c.get_classification()))
            for d in d_neg:
                c = classifier.classify(d, c_factory)
                ntools.assert_equal(c.max_label(),
                                    LibSvmClassifier.NEGATIVE_LABEL,
                                    "Incorrect %s label: %s :: %s" %
                                    (LibSvmClassifier.NEGATIVE_LABEL,
                                     d.vector(),
                                     c.get_classification()))

            # Closing resources
            p.close()
            p.join()
Exemple #4
0
        def test_simple_multiclass_classification(self):
            """
            simple LibSvmClassifier test - 3-class

            Test libSVM classification functionality using random constructed
            data, training the y=0.33 and y=.66 split
            """
            DIM = 2
            N = 1000
            P1_LABEL = 'p1'
            P2_LABEL = 'p2'
            P3_LABEL = 'p3'
            p = multiprocessing.pool.ThreadPool()
            d_factory = DescriptorElementFactory(DescriptorMemoryElement, {})
            c_factory = ClassificationElementFactory(
                MemoryClassificationElement, {})
            di = 0

            def make_element(argtup):
                (i, v) = argtup
                d = d_factory.new_descriptor('test', i)
                d.set_vector(v)
                return d

            # Constructing artificial descriptors
            x = numpy.random.rand(N, DIM)
            x_p1 = x[x[:, 1] <= 0.30]
            x_p2 = x[(x[:, 1] >= 0.36) & (x[:, 1] <= 0.63)]
            x_p3 = x[x[:, 1] >= 0.69]

            d_p1 = p.map(make_element, enumerate(x_p1, di))
            di += len(d_p1)
            d_p2 = p.map(make_element, enumerate(x_p2, di))
            di += len(d_p2)
            d_p3 = p.map(make_element, enumerate(x_p3, di))
            di += len(d_p3)

            # Create/Train test classifier
            classifier = LibSvmClassifier(
                train_params={
                    '-t': 0,  # linear kernel
                    '-b': 1,  # enable probability estimates
                    '-c': 2,  # SVM-C parameter C
                    '-q': ''  # quite mode
                },
                normalize=None,  # DO NOT normalize descriptors
            )
            classifier.train({P1_LABEL: d_p1, P2_LABEL: d_p2, P3_LABEL: d_p3})

            # Test classifier
            x = numpy.random.rand(N, DIM)
            x_p1 = x[x[:, 1] <= 0.30]
            x_p2 = x[(x[:, 1] >= 0.36) & (x[:, 1] <= 0.63)]
            x_p3 = x[x[:, 1] >= 0.69]

            d_p1 = p.map(make_element, enumerate(x_p1, di))
            di += len(d_p1)
            d_p2 = p.map(make_element, enumerate(x_p2, di))
            di += len(d_p2)
            d_p3 = p.map(make_element, enumerate(x_p3, di))
            di += len(d_p3)

            d_p1_sync = {}
            for d in d_p1:
                c = classifier.classify(d, c_factory)
                ntools.assert_equal(
                    c.max_label(), P1_LABEL, "Incorrect %s label: %s :: %s" %
                    (P1_LABEL, d.vector(), c.get_classification()))
                d_p1_sync[d] = c

            d_p2_sync = {}
            for d in d_p2:
                c = classifier.classify(d, c_factory)
                ntools.assert_equal(
                    c.max_label(), P2_LABEL, "Incorrect %s label: %s :: %s" %
                    (P2_LABEL, d.vector(), c.get_classification()))
                d_p2_sync[d] = c

            d_neg_sync = {}
            for d in d_p3:
                c = classifier.classify(d, c_factory)
                ntools.assert_equal(
                    c.max_label(), P3_LABEL, "Incorrect %s label: %s :: %s" %
                    (P3_LABEL, d.vector(), c.get_classification()))
                d_neg_sync[d] = c

            # test that async classify produces the same results
            # -- p1
            async_p1 = classifier.classify_async(d_p1, c_factory)
            ntools.assert_equal(
                async_p1, d_p1_sync,
                "Async computation of p1 set did not yield "
                "the same results as synchronous computation.")
            # -- p2
            async_p2 = classifier.classify_async(d_p2, c_factory)
            ntools.assert_equal(
                async_p2, d_p2_sync,
                "Async computation of p2 set did not yield "
                "the same results as synchronous computation.")
            # -- neg
            async_neg = classifier.classify_async(d_p3, c_factory)
            ntools.assert_equal(
                async_neg, d_neg_sync,
                "Async computation of neg set did not yield "
                "the same results as synchronous computation.")
            # -- combined -- threaded
            sync_combined = dict(d_p1_sync.items())
            sync_combined.update(d_p2_sync)
            sync_combined.update(d_neg_sync)
            async_combined = classifier.classify_async(
                d_p1 + d_p2 + d_p3, c_factory, use_multiprocessing=False)
            ntools.assert_equal(
                async_combined, sync_combined,
                "Async computation of all test descriptors "
                "did not yield the same results as "
                "synchronous classification.")
            # -- combined -- multiprocess
            async_combined = classifier.classify_async(
                d_p1 + d_p2 + d_p3, c_factory, use_multiprocessing=True)
            ntools.assert_equal(
                async_combined, sync_combined,
                "Async computation of all test descriptors "
                "(mixed order) did not yield the same results "
                "as synchronous classification.")

            # Closing resources
            p.close()
            p.join()
Exemple #5
0
        def test_simple_classification(self):
            """
            Test libSVM classification functionality using random constructed
            data, training the y=0.5 split
            """
            DIM = 2
            N = 1000
            POS_LABEL = 'positive'
            p = multiprocessing.pool.ThreadPool()
            d_factory = DescriptorElementFactory(DescriptorMemoryElement, {})
            c_factory = ClassificationElementFactory(MemoryClassificationElement, {})

            def make_element((i, v)):
                d = d_factory.new_descriptor('test', i)
                d.set_vector(v)
                return d

            # Constructing artificial descriptors
            x = numpy.random.rand(N, DIM)
            x_pos = x[x[:, 1] <= 0.45]
            x_neg = x[x[:, 1] >= 0.55]

            d_pos = p.map(make_element, enumerate(x_pos))
            d_neg = p.map(make_element, enumerate(x_neg, start=N//2))

            # Create/Train test classifier
            classifier = LibSvmClassifier(
                train_params={
                    '-t': 0,  # linear kernel
                    '-b': 1,  # enable probability estimates
                    '-c': 2,  # SVM-C parameter C
                    '-q': '',  # quite mode
                },
                normalize=None,  # DO NOT normalize descriptors
            )
            classifier.train({POS_LABEL: d_pos}, d_neg)

            # Test classifier
            x = numpy.random.rand(N, DIM)
            x_pos = x[x[:, 1] <= 0.45]
            x_neg = x[x[:, 1] >= 0.55]

            d_pos = p.map(make_element, enumerate(x_pos, N))
            d_neg = p.map(make_element, enumerate(x_neg, N + N//2))

            for d in d_pos:
                c = classifier.classify(d, c_factory)
                ntools.assert_equal(c.max_label(),
                                    POS_LABEL,
                                    "Found False positive: %s :: %s" %
                                    (d.vector(), c.get_classification()))
            for d in d_neg:
                c = classifier.classify(d, c_factory)
                ntools.assert_equal(c.max_label(),
                                    LibSvmClassifier.NEGATIVE_LABEL,
                                    "Found False negative: %s :: %s" %
                                    (d.vector(), c.get_classification()))

            # Closing resources
            p.close()
            p.join()