Exemple #1
0
def train_agent():
    plot_scores = []
    plot_mean_scores = []
    total_score = 0
    record = 0
    agent = Agent()
    game = SnakeGame()
    while True:
        # get old state
        state_old = agent.get_state(game)

        # get move
        final_move = agent.get_action(state_old)

        # perform move and get new state
        reward, done, score = game.play_step(final_move)
        state_new = agent.get_state(game)

        # train short memory
        agent.train_short_memory(state_old, final_move, reward, state_new,
                                 done)

        # remember
        agent.remember(state_old, final_move, reward, state_new, done)

        if done:
            game.reset()
            agent.num_games += 1
            agent.train_long_memory()

            if score > record:
                record = score
                agent.model.save()

            print(f'Game: {agent.num_games}, Score: {score}, Record: {record}')

            plot_scores.append(score)
            total_score += score
            mean_score = total_score / agent.num_games
            plot_mean_scores.append(mean_score)
            plot_scores(plot_scores, plot_mean_scores)
Exemple #2
0
    if not model:
        model = neural_network_model(input_size = len(X[0]))
    
    model.fit({'input': X}, {'targets': y}, n_epoch=7, snapshot_step=500, show_metric=True, run_id='openai_learning')
    return model

training_data = initial_population()
model = train_model(training_data)

scores = []
choices = []
for each_game in range(10):
    score = 0
    game_memory = []
    game.reset( True )
    win = game.getWindow()
    alive = True
    prev_obs = []
    new_observation = []
    while(True):
        win.getch()
        if len(prev_obs)==0:
            action = game.sample()
        else:
            action = np.argmax(model.predict(prev_obs.reshape(-1,len(prev_obs),1))[0])

        choices.append(action)
                
        new_observation, reward, alive = game.step(action)
        if not alive: