def copy_bands_to_file(src_file_path, dst_file_path, bands=None):
    # Get info from source product
    src_prod = ProductIO.readProduct(src_file_path)
    prod_name = src_prod.getName()
    prod_type = src_prod.getProductType()
    width = src_prod.getSceneRasterWidth()
    height = src_prod.getSceneRasterHeight()
    if bands is None:
        bands = src_prod.getBandNames()

    # Copy geocoding and selected bands from source to destination product
    dst_prod = Product(prod_name, prod_type, width, height)
    ProductUtils.copyGeoCoding(src_prod.getBandAt(0), dst_prod)
    for band in bands:
        r = ProductUtils.copyBand(band, src_prod, dst_prod, True)
        if r is None:
            src_prod.closeIO()
            raise RuntimeError(src_file_path + " does not contain band " +
                               band)

    # Write destination product to disk
    ext = os.path.splitext(dst_file_path)[1]
    if ext == '.dim':
        file_type = 'BEAM_DIMAP'
    elif ext == '.nc':
        file_type = 'NetCDF-CF'
    elif ext == '.tif':
        file_type = 'GeoTIFF-BigTIFF'
    else:
        file_type = 'GeoTIFF-BigTIFF'
    ProductIO.writeProduct(dst_prod, dst_file_path, file_type)
    src_prod.closeIO()
    dst_prod.closeIO()
Exemple #2
0
def phaseToHeight(inputfile, NLOOKS):
    """
    This is the central processing chain
    inputfile is a string of an interferogram file name
    NLOOKS is the number of range looks to be used for multi-looking
                                    #
    Multi-looking, Goldstein phase filtering, unwrapping and terrain correction are performed
    The output is then written to file in BEAM-DIMAP format
    """

    TEMP1 = 'ML_fl_temp.dim'
    TEMP2 = 'height_temp.dim'
    OUT = '_'.join(
        [inputfile.split('.dim')[0], 'ML',
         str(NLOOKS), 'height_TC.dim'])
    image = ProductIO.readProduct(inputfile)

    # SNAP Processing -------------------------------
    image = createP('Multilook', image, nRgLooks=NLOOKS)
    image = createP('GoldsteinPhaseFiltering',
                    image,
                    alpha=0.2,
                    useCoherenceMask=True,
                    coherenceThreshold=0.2,
                    writeout=TEMP1)

    # Numpy processing -----------------------------
    image = ProductIO.readProduct(TEMP1)
    phase = image.getBand(
        [x for x in list(image.getBandNames()) if 'Phase' in x][0])
    phase_data = get_data(phase)
    recentered = zero_phase(phase_data)
    unwrapped = unwrap(recentered)
    unw_deramped = remove_plane(unwrapped, 10000)
    height = unw_deramped / get_kz(image)
    height = height.transpose().flatten()

    # Write to target Product--------------------------
    W = image.getBandAt(0).getRasterWidth()
    H = image.getBandAt(0).getRasterHeight()
    targetP = snappy.Product('height_product', 'height_type', W, H)
    ProductUtils.copyMetadata(image, targetP)
    ProductUtils.copyTiePointGrids(image, targetP)
    targetP.setProductWriter(ProductIO.getProductWriter('BEAM-DIMAP'))
    for band in ['Phase', 'coh']:
        bandname = [x for x in list(image.getBandNames()) if band in x][0]
        ProductUtils.copyBand(bandname, image, band, targetP, True)
    targetP.setProductReader(ProductIO.getProductReader('BEAM-DIMAP'))
    ProductIO.writeProduct(targetP, TEMP2, 'BEAM-DIMAP')
    targetB = targetP.addBand('height', snappy.ProductData.TYPE_FLOAT32)
    targetB.setUnit('m')
    targetP.setProductWriter(ProductIO.getProductWriter('BEAM-DIMAP'))
    targetP.writeHeader(TEMP2)
    targetB.writePixels(0, 0, W, H, height)
    targetP.closeIO()

    # Terrain correction-------------------------
    image = ProductIO.readProduct(TEMP2)
    image = createP('Terrain-Correction',
                    image,
                    alignToStandardGrid='true',
                    demName='SRTM 1Sec HGT',
                    saveDEM='true')
    ProductIO.writeProduct(image, OUT, 'BEAM-DIMAP')
Exemple #3
0
data_tmp = GPF.createProduct("Terrain-Correction",params,data)
data = data_tmp
# Convert to dB (LinearTodBOp.java)
params = HashMap()
if opts.iangle_value or opts.iangle_image:
    band_list = list(data.getBandNames())
    bands = []
    for band in band_list:
        if not re.search('angle',band.lower()):
            bands.append(band)
    params.put('sourceBands',','.join(bands))
data_tmp = GPF.createProduct('linearToFromdB',params,data)
if opts.iangle_image:
    for band in band_list:
        if re.search('angle',band.lower()):
            ProductUtils.copyBand(band,data,band,data_tmp,True)
elif opts.iangle_value:
    iangle = np.nan
    for band in band_list:
        if re.search('angle',band.lower()):
            band_data = data.getBand(band)
            w = band_data.getRasterWidth()
            h = band_data.getRasterHeight()
            band_value = np.full((h,w),np.nan,dtype=np.float32)
            band_data.readPixels(0,0,w,h,band_value)
            iangle = np.nanmean(band_value[band_value > 0.1])
data = data_tmp
# Attach bandname (BandSelectOp.java)
band_list = list(data.getBandNames())
bands = []
for band in band_list:
Exemple #4
0
# Read original product
data_1 = ProductIO.readProduct(os.path.abspath(fnams[0]))
# Attach bandname
if not opts.skip_rename_master:
    dstr = os.path.basename(fnams[0])[0:8]
    try:
        dtim = datetime.strptime(dstr, '%Y%m%d')
    except Exception:
        raise ValueError('Error in filename >>> ' + fnams[0])
    band_list = list(data_1.getBandNames())
    bands = []
    for band in [band_list[j] for j in opts.band]:
        if dstr in band:
            continue
        band_new = band + '_' + dstr
        ProductUtils.copyBand(band, data_1, band_new, data_1, True)
        bands.append(band_new)
    if len(bands) > 0:
        params = HashMap()
        params.put('sourceBands', ','.join(bands))
        data_tmp = GPF.createProduct('BandSelect', params, data_1)
        data_1 = data_tmp
# Collocation
for i in range(1, len(fnams)):
    # Read original product
    data_2 = ProductIO.readProduct(os.path.abspath(fnams[i]))
    # Attach bandname
    if not opts.skip_rename_slave:
        dstr = os.path.basename(fnams[i])[0:8]
        try:
            dtim = datetime.strptime(dstr, '%Y%m%d')
Exemple #5
0
# check if band index given is correct
if not sys.argv[2] in ['2', '3', '4', '8']:
    print 'Incorrect band index'

# get cli arguments
product_file = sys.argv[1]
band_index = sys.argv[2]
band_name = 'B' + band_index
product_name = {
    'B2': 'blue',
    'B3': 'green',
    'B4': 'red',
    'B8': 'nir',
}[band_name]

# input product: open and get dimensions & name
input_product = ProductIO.readProduct(product_file)
product_width = input_product.getSceneRasterWidth()
product_height = input_product.getSceneRasterHeight()
product_name = input_product.getName()

# output product: copy selected band & save product
output_product = Product(product_name, product_name, product_width,
                         product_height)
ProductUtils.copyGeoCoding(input_product, output_product)
ProductUtils.copyBand(band_name, input_product, output_product, True)
ProductIO.writeProduct(output_product, product_name + '.band.dim',
                       'BEAM-DIMAP')
output_product.closeIO()
Exemple #6
0
    print 'Product file and band index required'
    sys.exit(1)

# check if band index given is correct
if not sys.argv[2] in ['2', '3', '4', '8']:
    print 'Incorrect band index'

# get cli arguments
product_file = sys.argv[1]
band_index = sys.argv[2]
band_name = 'B' + band_index
product_name = {
    'B2': 'blue',
    'B3': 'green',
    'B4': 'red',
    'B8': 'nir',
}[band_name]

# input product: open and get dimensions & name
input_product = ProductIO.readProduct(product_file)
product_width = input_product.getSceneRasterWidth()
product_height = input_product.getSceneRasterHeight()
product_name = input_product.getName()

# output product: copy selected band & save product
output_product = Product(product_name, product_name, product_width, product_height)
ProductUtils.copyGeoCoding(input_product, output_product)
ProductUtils.copyBand(band_name, input_product, output_product, True)
ProductIO.writeProduct(output_product, product_name + '.band.dim', 'BEAM-DIMAP')
output_product.closeIO()