Exemple #1
0
  def loss_fn(variables):
    rays = batch["rays"]
    ret = model.apply(variables, key_0, key_1, rays, FLAGS.randomized)
    if len(ret) not in (1, 2):
      raise ValueError(
          "ret should contain either 1 set of output (coarse only), or 2 sets"
          "of output (coarse as ret[0] and fine as ret[1]).")
    # The main prediction is always at the end of the ret list.
    rgb, _, _, sigma, _, _ = ret[-1]
    loss = ((rgb - batch["pixels"][Ellipsis, :3])**2).mean()
    psnr = utils.compute_psnr(loss)
    if len(ret) > 1:
      # If there are both coarse and fine predictions, we compute the loss for
      # the coarse prediction (ret[0]) as well.
      rgb_c, _, _, sigma_c, _, _ = ret[0]
      loss_c = ((rgb_c - batch["pixels"][Ellipsis, :3])**2).mean()
      psnr_c = utils.compute_psnr(loss_c)
      sparsity_c = FLAGS.sparsity_strength * jax.numpy.log(1.0 + sigma_c**2 /
                                                           0.5).mean()
    else:
      loss_c = 0.
      psnr_c = 0.
      sparsity_c = 0.0

    def tree_sum_fn(fn):
      return jax.tree_util.tree_reduce(
          lambda x, y: x + fn(y), variables, initializer=0)

    weight_l2 = (
        tree_sum_fn(lambda z: jnp.sum(z**2)) /
        tree_sum_fn(lambda z: jnp.prod(jnp.array(z.shape))))

    sparsity = FLAGS.sparsity_strength * jax.numpy.log(1.0 +
                                                       sigma**2 / 0.5).mean()
    stats = utils.Stats(
        loss=loss,
        psnr=psnr,
        loss_c=loss_c,
        psnr_c=psnr_c,
        weight_l2=weight_l2,
        sparsity=sparsity,
        sparsity_c=sparsity_c)
    return (loss + loss_c + FLAGS.weight_decay_mult * weight_l2 + sparsity +
            sparsity_c), stats
Exemple #2
0
def main(unused_argv):
  rng = random.PRNGKey(20200823)
  # Shift the numpy random seed by host_id() to shuffle data loaded by different
  # hosts.
  np.random.seed(20201473 + jax.host_id())

  if FLAGS.config is not None:
    utils.update_flags(FLAGS)
  if FLAGS.batch_size % jax.device_count() != 0:
    raise ValueError("Batch size must be divisible by the number of devices.")
  if FLAGS.train_dir is None:
    raise ValueError("train_dir must be set. None set now.")
  if FLAGS.data_dir is None:
    raise ValueError("data_dir must be set. None set now.")
  dataset = datasets.get_dataset("train", FLAGS)
  test_dataset = datasets.get_dataset("test", FLAGS)

  rng, key = random.split(rng)
  model, variables = models.get_model(key, dataset.peek(), FLAGS)
  optimizer = flax.optim.Adam(FLAGS.lr_init).create(variables)
  state = utils.TrainState(optimizer=optimizer)
  del optimizer, variables

  learning_rate_fn = functools.partial(
      utils.learning_rate_decay,
      lr_init=FLAGS.lr_init,
      lr_final=FLAGS.lr_final,
      max_steps=FLAGS.max_steps,
      lr_delay_steps=FLAGS.lr_delay_steps,
      lr_delay_mult=FLAGS.lr_delay_mult)

  train_pstep = jax.pmap(
      functools.partial(train_step, model),
      axis_name="batch",
      in_axes=(0, 0, 0, None),
      donate_argnums=(2,))

  def render_fn(variables, key_0, key_1, rays):
    return jax.lax.all_gather(
        model.apply(variables, key_0, key_1, rays, FLAGS.randomized),
        axis_name="batch")

  render_pfn = jax.pmap(
      render_fn,
      in_axes=(None, None, None, 0),  # Only distribute the data input.
      donate_argnums=(3,),
      axis_name="batch",
  )

  # Compiling to the CPU because it's faster and more accurate.
  ssim_fn = jax.jit(
      functools.partial(utils.compute_ssim, max_val=1.), backend="cpu")

  if not utils.isdir(FLAGS.train_dir):
    utils.makedirs(FLAGS.train_dir)
  state = checkpoints.restore_checkpoint(FLAGS.train_dir, state)
  # Resume training a the step of the last checkpoint.
  init_step = state.optimizer.state.step + 1
  state = flax.jax_utils.replicate(state)

  if jax.host_id() == 0:
    summary_writer = tensorboard.SummaryWriter(FLAGS.train_dir)

  # Prefetch_buffer_size = 3 x batch_size
  pdataset = flax.jax_utils.prefetch_to_device(dataset, 3)
  n_local_devices = jax.local_device_count()
  rng = rng + jax.host_id()  # Make random seed separate across hosts.
  keys = random.split(rng, n_local_devices)  # For pmapping RNG keys.
  gc.disable()  # Disable automatic garbage collection for efficiency.
  stats_trace = []
  reset_timer = True
  for step, batch in zip(range(init_step, FLAGS.max_steps + 1), pdataset):
    if reset_timer:
      t_loop_start = time.time()
      reset_timer = False
    lr = learning_rate_fn(step)
    state, stats, keys = train_pstep(keys, state, batch, lr)
    if jax.host_id() == 0:
      stats_trace.append(stats)
    if step % FLAGS.gc_every == 0:
      gc.collect()

    # Log training summaries. This is put behind a host_id check because in
    # multi-host evaluation, all hosts need to run inference even though we
    # only use host 0 to record results.
    if jax.host_id() == 0:
      if step % FLAGS.print_every == 0:
        summary_writer.scalar("train_loss", stats.loss[0], step)
        summary_writer.scalar("train_psnr", stats.psnr[0], step)
        summary_writer.scalar("train_sparsity", stats.sparsity[0], step)
        summary_writer.scalar("train_loss_coarse", stats.loss_c[0], step)
        summary_writer.scalar("train_psnr_coarse", stats.psnr_c[0], step)
        summary_writer.scalar("train_sparsity_coarse", stats.sparsity_c[0],
                              step)

        summary_writer.scalar("weight_l2", stats.weight_l2[0], step)
        avg_loss = np.mean(np.concatenate([s.loss for s in stats_trace]))
        avg_psnr = np.mean(np.concatenate([s.psnr for s in stats_trace]))
        stats_trace = []
        summary_writer.scalar("train_avg_loss", avg_loss, step)
        summary_writer.scalar("train_avg_psnr", avg_psnr, step)
        summary_writer.scalar("learning_rate", lr, step)
        steps_per_sec = FLAGS.print_every / (time.time() - t_loop_start)
        reset_timer = True
        rays_per_sec = FLAGS.batch_size * steps_per_sec
        summary_writer.scalar("train_steps_per_sec", steps_per_sec, step)
        summary_writer.scalar("train_rays_per_sec", rays_per_sec, step)
        precision = int(np.ceil(np.log10(FLAGS.max_steps))) + 1
        print(("{:" + "{:d}".format(precision) + "d}").format(step) +
              f"/{FLAGS.max_steps:d}: " + f"i_loss={stats.loss[0]:0.4f}, " +
              f"avg_loss={avg_loss:0.4f}, " +
              f"weight_l2={stats.weight_l2[0]:0.2e}, " + f"lr={lr:0.2e}, " +
              f"{rays_per_sec:0.0f} rays/sec")
      if step % FLAGS.save_every == 0:
        state_to_save = jax.device_get(jax.tree_map(lambda x: x[0], state))
        checkpoints.save_checkpoint(
            FLAGS.train_dir, state_to_save, int(step), keep=100)

    # Test-set evaluation.
    if FLAGS.render_every > 0 and step % FLAGS.render_every == 0:
      # We reuse the same random number generator from the optimization step
      # here on purpose so that the visualization matches what happened in
      # training.
      t_eval_start = time.time()
      eval_variables = jax.device_get(jax.tree_map(lambda x: x[0],
                                                   state)).optimizer.target
      test_case = next(test_dataset)
      (pred_color, pred_disp, pred_acc, pred_features,
       pred_specular) = utils.render_image(
           functools.partial(render_pfn, eval_variables),
           test_case["rays"],
           keys[0],
           FLAGS.dataset == "llff",
           chunk=FLAGS.chunk)

      # Log eval summaries on host 0.
      if jax.host_id() == 0:
        psnr = utils.compute_psnr(
            ((pred_color - test_case["pixels"])**2).mean())
        ssim = ssim_fn(pred_color, test_case["pixels"])
        eval_time = time.time() - t_eval_start
        num_rays = jnp.prod(jnp.array(test_case["rays"].directions.shape[:-1]))
        rays_per_sec = num_rays / eval_time
        summary_writer.scalar("test_rays_per_sec", rays_per_sec, step)
        print(f"Eval {step}: {eval_time:0.3f}s., {rays_per_sec:0.0f} rays/sec")
        summary_writer.scalar("test_psnr", psnr, step)
        summary_writer.scalar("test_ssim", ssim, step)
        summary_writer.image("test_pred_color", pred_color, step)
        summary_writer.image("test_pred_disp", pred_disp, step)
        summary_writer.image("test_pred_acc", pred_acc, step)
        summary_writer.image("test_pred_features", pred_features, step)
        summary_writer.image("test_pred_specular", pred_specular, step)
        summary_writer.image("test_target", test_case["pixels"], step)

  if FLAGS.max_steps % FLAGS.save_every != 0:
    state = jax.device_get(jax.tree_map(lambda x: x[0], state))
    checkpoints.save_checkpoint(
        FLAGS.train_dir, state, int(FLAGS.max_steps), keep=100)
Exemple #3
0
def main(unused_argv):
    # Hide the GPUs and TPUs from TF so it does not reserve memory on them for
    # LPIPS computation or dataset loading.
    tf.config.experimental.set_visible_devices([], "GPU")
    tf.config.experimental.set_visible_devices([], "TPU")

    rng = random.PRNGKey(20200823)

    if FLAGS.config is not None:
        utils.update_flags(FLAGS)
    if FLAGS.train_dir is None:
        raise ValueError("train_dir must be set. None set now.")
    if FLAGS.data_dir is None:
        raise ValueError("data_dir must be set. None set now.")

    dataset = datasets.get_dataset("test", FLAGS)
    rng, key = random.split(rng)
    model, init_variables = models.get_model(key, dataset.peek(), FLAGS)
    optimizer = flax.optim.Adam(FLAGS.lr_init).create(init_variables)
    state = utils.TrainState(optimizer=optimizer)
    del optimizer, init_variables

    # Rendering is forced to be deterministic even if training was randomized, as
    # this eliminates "speckle" artifacts.
    def render_fn(variables, key_0, key_1, rays):
        return jax.lax.all_gather(model.apply(variables, key_0, key_1, rays,
                                              False),
                                  axis_name="batch")

    # pmap over only the data input.
    render_pfn = jax.pmap(
        render_fn,
        in_axes=(None, None, None, 0),
        donate_argnums=3,
        axis_name="batch",
    )

    # Compiling to the CPU because it's faster and more accurate.
    ssim_fn = jax.jit(functools.partial(utils.compute_ssim, max_val=1.),
                      backend="cpu")

    last_step = 0
    out_dir = path.join(FLAGS.train_dir,
                        "path_renders" if FLAGS.render_path else "test_preds")
    if not FLAGS.eval_once:
        summary_writer = tensorboard.SummaryWriter(
            path.join(FLAGS.train_dir, "eval"))
    while True:
        state = checkpoints.restore_checkpoint(FLAGS.train_dir, state)
        step = int(state.optimizer.state.step)
        if step <= last_step:
            continue
        if FLAGS.save_output and (not utils.isdir(out_dir)):
            utils.makedirs(out_dir)
        psnr_values = []
        ssim_values = []
        if not FLAGS.eval_once:
            showcase_index = np.random.randint(0, dataset.size)
        for idx in range(dataset.size):
            print(f"Evaluating {idx+1}/{dataset.size}")
            batch = next(dataset)
            (pred_color, pred_disp, pred_acc, pred_features,
             pred_specular) = utils.render_image(functools.partial(
                 render_pfn, state.optimizer.target),
                                                 batch["rays"],
                                                 rng,
                                                 FLAGS.dataset == "llff",
                                                 chunk=FLAGS.chunk)
            if jax.host_id() != 0:  # Only record via host 0.
                continue

            if not FLAGS.eval_once and idx == showcase_index:
                showcase_color = pred_color
                showcase_disp = pred_disp
                showcase_acc = pred_acc
                showcase_features = pred_features
                showcase_specular = pred_specular
                if not FLAGS.render_path:
                    showcase_gt = batch["pixels"]

            if not FLAGS.render_path:
                psnr = utils.compute_psnr(
                    ((pred_color - batch["pixels"])**2).mean())
                ssim = ssim_fn(pred_color, batch["pixels"])
                print(f"PSNR = {psnr:.4f}, SSIM = {ssim:.4f}")
                psnr_values.append(float(psnr))
                ssim_values.append(float(ssim))

            if FLAGS.save_output:
                utils.save_img(pred_color,
                               path.join(out_dir, "{:03d}.png".format(idx)))
                utils.save_img(
                    pred_disp[Ellipsis, 0],
                    path.join(out_dir, "disp_{:03d}.png".format(idx)))

        if (not FLAGS.eval_once) and (jax.host_id() == 0):
            summary_writer.image("pred_color", showcase_color, step)
            summary_writer.image("pred_disp", showcase_disp, step)
            summary_writer.image("pred_acc", showcase_acc, step)
            summary_writer.image("pred_features", showcase_features, step)
            summary_writer.image("pred_specular", showcase_specular, step)
            if not FLAGS.render_path:
                summary_writer.scalar("psnr", np.mean(np.array(psnr_values)),
                                      step)
                summary_writer.scalar("ssim", np.mean(np.array(ssim_values)),
                                      step)
                summary_writer.image("target", showcase_gt, step)

        if FLAGS.save_output and (not FLAGS.render_path) and (jax.host_id()
                                                              == 0):
            with utils.open_file(path.join(out_dir, f"psnrs_{step}.txt"),
                                 "w") as f:
                f.write(" ".join([str(v) for v in psnr_values]))
            with utils.open_file(path.join(out_dir, f"ssims_{step}.txt"),
                                 "w") as f:
                f.write(" ".join([str(v) for v in ssim_values]))
            with utils.open_file(path.join(out_dir, "psnr.txt"), "w") as f:
                f.write("{}".format(np.mean(np.array(psnr_values))))
            with utils.open_file(path.join(out_dir, "ssim.txt"), "w") as f:
                f.write("{}".format(np.mean(np.array(ssim_values))))

        if FLAGS.eval_once:
            break
        if int(step) >= FLAGS.max_steps:
            break
        last_step = step