def main(): parser = argparse.ArgumentParser() ## Required parameters parser.add_argument( "--data_dir", default=None, type=str, required=True, help= "The input data dir. Should contain the .tsv files (or other data files) for the task." ) parser.add_argument("--model_type", default=None, type=str, required=True, help="Model type selected in the list: ") parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list") parser.add_argument( "--task_name", default=None, type=str, required=True, help="The name of the task to train selected in the list: " + ", ".join(processors.keys())) parser.add_argument( "--output_dir", default=None, type=str, required=True, help= "The output directory where the model predictions and checkpoints will be written." ) parser.add_argument("--vocab_file", default='', type=str) parser.add_argument("--spm_model_file", default='', type=str) ## Other parameters parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name") parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name") parser.add_argument( "--cache_dir", default="", type=str, help= "Where do you want to store the pre-trained models downloaded from s3") parser.add_argument( "--max_seq_length", default=512, type=int, help= "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.") parser.add_argument("--do_train", action='store_true', help="Whether to run training.") parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.") parser.add_argument( "--do_predict", action='store_true', help="Whether to run the model in inference mode on the test set.") parser.add_argument( "--do_lower_case", action='store_true', help="Set this flag if you are using an uncased model.") parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument( '--gradient_accumulation_steps', type=int, default=1, help= "Number of updates steps to accumulate before performing a backward/update pass." ) parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-6, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument( "--max_steps", default=-1, type=int, help= "If > 0: set total number of training steps to perform. Override num_train_epochs." ) parser.add_argument( "--warmup_proportion", default=0.1, type=float, help= "Proportion of training to perform linear learning rate warmup for,E.g., 0.1 = 10% of training." ) parser.add_argument('--logging_steps', type=int, default=10, help="Log every X updates steps.") parser.add_argument('--save_steps', type=int, default=1000, help="Save checkpoint every X updates steps.") parser.add_argument( "--eval_all_checkpoints", action='store_true', help= "Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" ) parser.add_argument("--no_cuda", action='store_true', help="Avoid using CUDA when available") parser.add_argument('--overwrite_output_dir', action='store_true', help="Overwrite the content of the output directory") parser.add_argument( '--overwrite_cache', action='store_true', help="Overwrite the cached training and evaluation sets") parser.add_argument('--seed', type=int, default=42, help="random seed for initialization") parser.add_argument( '--fp16', action='store_true', help= "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" ) parser.add_argument( '--fp16_opt_level', type=str, default='O1', help= "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.") parser.add_argument('--server_port', type=str, default='', help="For distant debugging.") os.environ['CUDA_VISIBLE_DEVICES'] = "0" args = parser.parse_args() if not os.path.exists(args.output_dir): os.mkdir(args.output_dir) args.output_dir = args.output_dir + '{}'.format(args.model_type) if not os.path.exists(args.output_dir): os.mkdir(args.output_dir) init_logger(log_file=args.output_dir + '/{}-{}.log'.format(args.model_type, args.task_name)) if os.path.exists(args.output_dir) and os.listdir( args.output_dir ) and args.do_train and not args.overwrite_output_dir: raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome." .format(args.output_dir)) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend='nccl') args.n_gpu = 1 args.device = device # Setup logging logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16) # Set seed seed_everything(args.seed) # Prepare GLUE task args.task_name = args.task_name.lower() if args.task_name not in processors: raise ValueError("Task not found: %s" % (args.task_name)) processor = processors[args.task_name]() args.output_mode = output_modes[args.task_name] label_list = processor.get_labels() num_labels = len(label_list) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier( ) # Make sure only the first process in distributed training will download model & vocab args.model_type = args.model_type.lower() config = AlbertConfig.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name) tokenizer = tokenization_albert.FullTokenizer( vocab_file=args.vocab_file, do_lower_case=args.do_lower_case, spm_model_file=args.spm_model_file) model = AlbertForSentenceRanking.from_pretrained( args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config) if args.local_rank == 0: torch.distributed.barrier( ) # Make sure only the first process in distributed training will download model & vocab model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, data_type='train') global_step, tr_loss = train(args, train_dataset, model, tokenizer) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): # Create output directory if needed if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` model_to_save = model.module if hasattr( model, 'module') else model # Take care of distributed/parallel training model_to_save.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, 'training_args.bin')) # Evaluation results = [] if args.do_eval and args.local_rank in [-1, 0]: tokenizer = tokenization_albert.FullTokenizer( vocab_file=args.vocab_file, do_lower_case=args.do_lower_case, spm_model_file=args.spm_model_file) checkpoints = [(0, args.output_dir)] if args.eval_all_checkpoints: checkpoints = list( os.path.dirname(c) for c in sorted( glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True))) checkpoints = [(int(checkpoint.split('-')[-1]), checkpoint) for checkpoint in checkpoints if checkpoint.find('checkpoint') != -1] checkpoints = sorted(checkpoints, key=lambda x: x[0]) logger.info("Evaluate the following checkpoints: %s", checkpoints) for _, checkpoint in checkpoints: global_step = checkpoint.split( '-')[-1] if len(checkpoints) > 1 else "" prefix = checkpoint.split( '/')[-1] if checkpoint.find('checkpoint') != -1 else "" model = AlbertForSentenceRanking.from_pretrained(checkpoint) model.to(args.device) result = evaluate(args, model, tokenizer, prefix=prefix) results.extend([(k + '_{}'.format(global_step), v) for k, v in result.items()]) output_eval_file = os.path.join(args.output_dir, "checkpoint_eval_results.txt") with open(output_eval_file, "w") as writer: for key, value in results: writer.write("%s = %s\n" % (key, str(value)))
def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task_name", default=None, type=str, required=True, help="The name of the task to train selected in the list: " + ", ".join(processors.keys())) parser.add_argument( "--data_dir", default=None, type=str, required=True, help= "The input data dir. Should contain the training files for the CoNLL-2003 NER task.", ) parser.add_argument( "--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()), ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS), ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help= "The output directory where the model predictions and checkpoints will be written.", ) # Other parameters parser.add_argument('--markup', default='bios', type=str, choices=['bios', 'bio']) parser.add_argument('--loss_type', default='ce', type=str, choices=['lsr', 'focal', 'ce']) parser.add_argument( "--labels", default="", type=str, help= "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.", ) parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name") parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--cache_dir", default="", type=str, help= "Where do you want to store the pre-trained models downloaded from s3", ) parser.add_argument( "--train_max_seq_length", default=128, type=int, help= "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.", ) parser.add_argument( "--eval_max_seq_length", default=512, type=int, help= "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.", ) parser.add_argument("--do_train", action="store_true", help="Whether to run training.") parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") parser.add_argument("--do_predict", action="store_true", help="Whether to run predictions on the test set.") parser.add_argument( "--evaluate_during_training", action="store_true", help="Whether to run evaluation during training at each logging step.", ) parser.add_argument( "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model.") parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help= "Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument("--weight_decay", default=0.01, type=float, help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") parser.add_argument( "--max_steps", default=-1, type=int, help= "If > 0: set total number of training steps to perform. Override num_train_epochs.", ) parser.add_argument( "--warmup_proportion", default=0.1, type=float, help= "Proportion of training to perform linear learning rate warmup for,E.g., 0.1 = 10% of training." ) parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.") parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.") parser.add_argument( "--eval_all_checkpoints", action="store_true", help= "Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument( '--predict_all_checkpoints', action="store_true", help= "Predict all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available") parser.add_argument("--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory") parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets") parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--fp16", action="store_true", help= "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=str, default="O1", help= "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html", ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument("--server_ip", type=str, default="", help="For distant debugging.") parser.add_argument("--server_port", type=str, default="", help="For distant debugging.") args = parser.parse_args() args.output_dir = args.output_dir + '{}'.format(args.model_type) if not os.path.exists(args.output_dir): os.mkdir(args.output_dir) init_logger(log_file=args.output_dir + '/{}-{}-{}.log'.format( args.model_type, args.task_name, time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime()))) if os.path.exists(args.output_dir) and os.listdir( args.output_dir ) and args.do_train and not args.overwrite_output_dir: raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome." .format(args.output_dir)) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = torch.cuda.device_count() else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend="nccl") args.n_gpu = 1 args.device = device logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16, ) # Set seed seed_everything(args.seed) # Prepare NER task args.task_name = args.task_name.lower() if args.task_name not in processors: raise ValueError("Task not found: %s" % (args.task_name)) processor = processors[args.task_name]() label_list = processor.get_labels() args.id2label = {i: label for i, label in enumerate(label_list)} args.label2id = {label: i for i, label in enumerate(label_list)} num_labels = len(label_list) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: torch.distributed.barrier( ) # Make sure only the first process in distributed training will download model & vocab args.model_type = args.model_type.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, loss_type=args.loss_type, cache_dir=args.cache_dir if args.cache_dir else None, soft_label=True) tokenizer = tokenizer_class.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None, ) model = model_class.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config) if args.local_rank == 0: torch.distributed.barrier( ) # Make sure only the first process in distributed training will download model & vocab model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Training if args.do_train: train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, data_type='train') global_step, tr_loss = train(args, train_dataset, model, tokenizer) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): # Create output directory if needed if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` model_to_save = (model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(args.output_dir) tokenizer.save_vocabulary(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, "training_args.bin")) #Evaluation results = {} if args.do_eval and args.local_rank in [-1, 0]: tokenizer = tokenizer_class.from_pretrained( args.output_dir, do_lower_case=args.do_lower_case) checkpoints = [args.output_dir] if args.eval_all_checkpoints: checkpoints = list( os.path.dirname(c) for c in sorted( glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))) logging.getLogger("pytorch_transformers.modeling_utils").setLevel( logging.WARN) # Reduce logging logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: global_step = checkpoint.split( "-")[-1] if len(checkpoints) > 1 else "" prefix = checkpoint.split( '/')[-1] if checkpoint.find('checkpoint') != -1 else "" model = model_class.from_pretrained(checkpoint) model.to(args.device) result = evaluate(args, model, tokenizer, prefix=prefix) if global_step: result = { "{}_{}".format(global_step, k): v for k, v in result.items() } results.update(result) output_eval_file = os.path.join(args.output_dir, "eval_results.txt") with open(output_eval_file, "w") as writer: for key in sorted(results.keys()): writer.write("{} = {}\n".format(key, str(results[key]))) if args.do_predict and args.local_rank in [-1, 0]: tokenizer = tokenizer_class.from_pretrained( args.output_dir, do_lower_case=args.do_lower_case) checkpoints = [args.output_dir] if args.predict_all_checkpoints > 0: checkpoints = list( os.path.dirname(c) for c in sorted( glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True))) logging.getLogger("transformers.modeling_utils").setLevel( logging.WARN) # Reduce logging checkpoints = [ x for x in checkpoints if x.split('-')[-1] == str(args.predict_checkpoints) ] logger.info("Predict the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: prefix = checkpoint.split( '/')[-1] if checkpoint.find('checkpoint') != -1 else "" model = model_class.from_pretrained(checkpoint) model.to(args.device) predict(args, model, tokenizer, prefix=prefix)