Exemple #1
0
def create_model(resnet_cnn):
    # freeze the resnet weights
    for param in resnet_cnn.parameters():
        param.requires_grad = False

    # define input features
    in_features = resnet_cnn.fc.in_features
    feature_extractor = nn.Sequential(*list(resnet_cnn.children())[:-1])

    # initialize FC layer: maps 3 sets of image features to class logits
    WEMB_SIZE = 100
    fc = nn.Linear(in_features * 3 + 2 * WEMB_SIZE, 3)
    init_fc(fc)

    # define layers
    module_pool = nn.ModuleDict(
        {
            "feat_extractor": feature_extractor,
            "prediction_head": fc,
            "feat_concat": FlatConcat(),
            "word_emb": WordEmb(),
        }
    )

    # define task flow through modules
    op_sequence = get_op_sequence()
    pred_cls_task = Task(
        name="visual_relation_task",
        module_pool=module_pool,
        op_sequence=op_sequence,
        scorer=Scorer(metrics=["f1_micro"]),
    )
    return MultitaskClassifier([pred_cls_task])
Exemple #2
0
def create_task(task_name: str, module_suffixes: List[str]) -> Task:
    module1_name = f"linear1{module_suffixes[0]}"
    module2_name = f"linear2{module_suffixes[1]}"

    module_pool = nn.ModuleDict({
        module1_name:
        nn.Sequential(nn.Linear(2, 20), nn.ReLU()),
        module2_name:
        nn.Linear(20, 2),
    })

    op1 = Operation(module_name=module1_name,
                    inputs=[("_input_", "coordinates")])
    op2 = Operation(module_name=module2_name, inputs=[op1.name])

    op_sequence = [op1, op2]

    task = Task(
        name=task_name,
        module_pool=module_pool,
        op_sequence=op_sequence,
        scorer=Scorer(metrics=["accuracy"]),
    )

    return task
def create_task(task_name, module_suffixes=("", "")):
    module1_name = f"linear1{module_suffixes[0]}"
    module2_name = f"linear2{module_suffixes[1]}"

    linear1 = nn.Linear(2, 2)
    linear1.weight.data.copy_(torch.eye(2))
    linear1.bias.data.copy_(torch.zeros((2, )))

    linear2 = nn.Linear(2, 2)
    linear2.weight.data.copy_(torch.eye(2))
    linear2.bias.data.copy_(torch.zeros((2, )))

    module_pool = nn.ModuleDict({
        module1_name: nn.Sequential(linear1, nn.ReLU()),
        module2_name: linear2
    })

    op0 = Operation(module_name=module1_name,
                    inputs=[("_input_", "data")],
                    name="op0")
    op1 = Operation(module_name=module2_name, inputs=[op0.name], name="op1")

    op_sequence = [op0, op1]

    task = Task(name=task_name,
                module_pool=module_pool,
                op_sequence=op_sequence)

    return task
    def test_task_creation(self):
        module_pool = nn.ModuleDict({
            "linear1":
            nn.Sequential(nn.Linear(2, 10), nn.ReLU()),
            "linear2":
            nn.Linear(10, 1),
        })

        op_sequence = [
            Operation(name="the_first_layer",
                      module_name="linear1",
                      inputs=["_input_"]),
            Operation(
                name="the_second_layer",
                module_name="linear2",
                inputs=["the_first_layer"],
            ),
        ]

        task = Task(name=TASK_NAME,
                    module_pool=module_pool,
                    op_sequence=op_sequence)

        # Task has no functionality on its own
        # Here we only confirm that the object was initialized
        self.assertEqual(task.name, TASK_NAME)
 def test_no_input_spec(self):
     # Confirm model doesn't break when a module does not specify specific inputs
     dataset = create_dataloader("task", shuffle=False).dataset
     task = Task(
         name="task",
         module_pool=nn.ModuleDict({"identity": nn.Identity()}),
         op_sequence=[Operation("identity", [])],
     )
     model = MultitaskClassifier(tasks=[task], dataparallel=False)
     outputs = model.forward(dataset.X_dict, ["task"])
     self.assertIn("_input_", outputs)
Exemple #6
0
def create_dummy_task(task_name):
    # Create dummy task
    module_pool = nn.ModuleDict(
        {"linear1": nn.Linear(2, 10), "linear2": nn.Linear(10, 2)}
    )

    op_sequence = [
        Operation(name="encoder", module_name="linear1", inputs=["_input_"]),
        Operation(name="prediction_head", module_name="linear2", inputs=["encoder"]),
    ]

    task = Task(name=task_name, module_pool=module_pool, op_sequence=op_sequence)
    return task
    def test_score_shuffled(self):
        # Test scoring with a shuffled dataset

        set_seed(123)

        class SimpleVoter(nn.Module):
            def forward(self, x):
                """Set class 0 to -1 if x and 1 otherwise"""
                mask = x % 2 == 0
                out = torch.zeros(x.shape[0], 2)
                out[mask, 0] = 1  # class 0
                out[~mask, 1] = 1  # class 1
                return out

        # Create model
        task_name = "VotingTask"
        module_name = "simple_voter"
        module_pool = nn.ModuleDict({module_name: SimpleVoter()})
        op0 = Operation(module_name=module_name,
                        inputs=[("_input_", "data")],
                        name="op0")
        op_sequence = [op0]
        task = Task(name=task_name,
                    module_pool=module_pool,
                    op_sequence=op_sequence)
        model = MultitaskClassifier([task])

        # Create dataset
        y_list = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
        x_list = [i for i in range(len(y_list))]
        Y = torch.LongTensor(y_list * 100)
        X = torch.FloatTensor(x_list * 100)
        dataset = DictDataset(name="dataset",
                              split="train",
                              X_dict={"data": X},
                              Y_dict={task_name: Y})

        # Create dataloaders
        dataloader = DictDataLoader(dataset, batch_size=2, shuffle=False)
        scores = model.score([dataloader])

        self.assertEqual(scores["VotingTask/dataset/train/accuracy"], 0.6)

        dataloader_shuffled = DictDataLoader(dataset,
                                             batch_size=2,
                                             shuffle=True)
        scores_shuffled = model.score([dataloader_shuffled])
        self.assertEqual(scores_shuffled["VotingTask/dataset/train/accuracy"],
                         0.6)
Exemple #8
0
    def __init__(
        self,
        base_architecture: nn.Module,
        head_dim: int,
        slice_names: List[str],
        input_data_key: str = DEFAULT_INPUT_DATA_KEY,
        task_name: str = DEFAULT_TASK_NAME,
        scorer: Scorer = Scorer(metrics=["accuracy", "f1"]),
        **multitask_kwargs: Any,
    ) -> None:

        # Initialize module_pool with 1) base_architecture and 2) prediction_head
        # Assuming `head_dim` can be used to map base_architecture to prediction_head
        module_pool = nn.ModuleDict({
            "base_architecture": base_architecture,
            "prediction_head": nn.Linear(head_dim, 2),
        })

        # Create op_sequence from base_architecture -> prediction_head
        op_sequence = [
            Operation(
                name="input_op",
                module_name="base_architecture",
                inputs=[("_input_", input_data_key)],
            ),
            Operation(name="head_op",
                      module_name="prediction_head",
                      inputs=["input_op"]),
        ]

        # Initialize base_task using specified base_architecture
        self.base_task = Task(
            name=task_name,
            module_pool=module_pool,
            op_sequence=op_sequence,
            scorer=scorer,
        )

        # Convert base_task to associated slice_tasks
        slice_tasks = convert_to_slice_tasks(self.base_task, slice_names)

        # Initialize a MultitaskClassifier with all slice_tasks
        model_name = f"{task_name}_slicing_classifier"
        super().__init__(tasks=slice_tasks,
                         name=model_name,
                         **multitask_kwargs)
        self.slice_names = slice_names
Exemple #9
0
def create_task(task_name, module_suffixes=("", "")):
    module1_name = f"linear1{module_suffixes[0]}"
    module2_name = f"linear2{module_suffixes[1]}"

    module_pool = nn.ModuleDict(
        {
            module1_name: nn.Sequential(nn.Linear(2, 10), nn.ReLU()),
            module2_name: nn.Linear(10, 2),
        }
    )

    op1 = Operation(module_name=module1_name, inputs=[("_input_", "data")])
    op2 = Operation(module_name=module2_name, inputs=[op1.name])

    op_sequence = [op1, op2]

    task = Task(name=task_name, module_pool=module_pool, op_sequence=op_sequence)

    return task
Exemple #10
0
                        inputs=[("_input_", task_data_name)])

        # "Pass the output of op1 (the BERT module) as input to the head_module"
        op2 = Operation(name=task_head_name,
                        module_name=task_head_name,
                        inputs=["bert_module"])

        op_sequence = [op1, op2]

        # Create the Task object, which includes the same name as that in dataloaders, all modules used,
        # and the sequence in which they are used.
        # Loss and scoring functions are added based on task type
        task_object = Task(
            name=task_formal_name,
            module_pool=module_pool,
            op_sequence=op_sequence,
            loss_func=task_type_function_mapping[task_type]["loss_function"],
            output_func=partial(F.softmax, dim=1),
            scorer=task_type_function_mapping[task_type]["scorer"],
        )

        # Add task to list of tasks
        tasks.append(task_object)

# Input list of tasks to MultitaskClassifier object to create model with architecture set for each task
model = MultitaskClassifier(tasks)

# Set out trainer settings - I.e. how the model will train
trainer_config = {
    "progress_bar": True,
    "n_epochs": 2,
    "lr": 0.02,
Exemple #11
0
# %% [markdown]
# Putting this all together, we define the circle task:

# %%
from functools import partial

import torch.nn.functional as F

from snorkel.analysis import Scorer
from snorkel.classification import Task

circle_task = Task(
    name="circle_task",
    module_pool=module_pool,
    op_sequence=op_sequence,
    loss_func=F.cross_entropy,
    output_func=partial(F.softmax, dim=1),
    scorer=Scorer(metrics=["accuracy"]),
)

# %% [markdown]
# Note that `Task` objects are not dependent on a particular dataset; multiple datasets can be passed through the same modules for pre-training or co-training.

# %% [markdown]
# ### Again, but faster

# %% [markdown]
# We'll now define the square task, but more succinctly—for example, using the fact that the default name for an `Operation` is its `module_name` (since most tasks only use their modules once per forward pass).
#
# We'll also define the square task to share the first module in its task flow (`base_mlp`) with the circle task to demonstrate how to share modules. (Note that this is purely for illustrative purposes; for this toy task, it is quite possible that this is not the optimal arrangement of modules).
#