def labeling_evaluation(df_train, df_test, label_model):
    lfs = [
        LabelingFunction.lf_ind_keyword, LabelingFunction.lf_short,
        LabelingFunction.lf_cmp_re, LabelingFunction.lf_industry_keyword,
        LabelingFunction.lf_surname_re, LabelingFunction.industry_cls
    ]

    applier = PandasLFApplier(lfs=lfs)
    L_train = applier.apply(df=df_train)
    L_test = applier.apply(df=df_test)
    Y_test = df_test.label.values
    analysis = LFAnalysis(L=L_train, lfs=lfs).lf_summary()

    if label_model == "majority":
        majority_model = MajorityLabelVoter()
        preds_train = majority_model.predict(L=L_train)
        majority_acc = majority_model.score(
            L=L_test, Y=Y_test, tie_break_policy="random")["accuracy"]
        print(f"{'Majority Vote Accuracy:':<25} {majority_acc * 100:.1f}%")

        df_train_filtered, preds_train_filtered = filter_unlabeled_dataframe(
            X=df_train, y=preds_train, L=L_train)
        return df_train_filtered, preds_train_filtered, analysis

    if label_model == "weighted":
        label_model = LabelModel(cardinality=len(
            [c for c in dir(Polarity) if not c.startswith("__")]),
                                 verbose=True)
        label_model.fit(L_train=L_train, n_epochs=500, log_freq=100, seed=123)
        probs_train = label_model.predict_proba(L_train)
        label_model_acc = label_model.score(
            L=L_test, Y=Y_test, tie_break_policy="random")["accuracy"]
        print(f"{'Label Model Accuracy:':<25} {label_model_acc * 100:.1f}%")

        df_train_filtered, probs_train_filtered = filter_unlabeled_dataframe(
            X=df_train, y=probs_train, L=L_train)
        preds_train_filtered = probs_to_preds(probs_train_filtered)
        return df_train_filtered, probs_train_filtered, preds_train_filtered, analysis
def model_analysis(label_model: LabelModel,
                   training_set: pd.DataFrame,
                   L_train: np.ndarray,
                   L_test: np.ndarray,
                   Y_test: np.ndarray,
                   lfs: list,
                   output_file="output") -> None:
    # TODO: consider using **kwargs instead of this painful list of arguments
    """Output analysis for the label model to a file

    :param label_model: The current label model which we want to output analysis for
    :type label_model: LabelModel
    :param training_set: A dataframe containing the training dataset
    :type training_set: pd.DataFrame
    :param L_train: The matrix of labels generated by the labeling functions on the training data
    :type L_train: np.ndarray
    :param L_test: The matrix of labels generated bt the labeling functions on the testing data
    :type L_test: np.ndarray
    :param Y_test: Gold labels associated with data points in L_test
    :type Y_test: np.ndarray
    :param lfs: List of labeling functions
    :type lfs: list
    :param output_file: A path where the output file should be writtent to, defaults to `PROJECT_ROOT/output`
    :type output_file: str, optional
    """
    Y_train = label_model.predict_proba(L=L_train)
    Y_pred = label_model.predict(L=L_test, tie_break_policy="abstain")
    lf_analysis_train = LFAnalysis(L=L_train, lfs=lfs).lf_summary()

    # TODO: Write this df to a output file. Ask Jennifer about how to handle this
    print(lf_analysis_train)

    # build majority label voter model
    majority_model = MajorityLabelVoter()
    majority_acc = majority_model.score(L=L_test,
                                        Y=Y_test,
                                        tie_break_policy="abstain",
                                        metrics=["f1", "accuracy"])
    label_model_acc = label_model.score(L=L_test,
                                        Y=Y_test,
                                        tie_break_policy="abstain",
                                        metrics=["f1", "accuracy"])

    # get precision and recall scores
    p_score = precision_score(y_true=Y_test, y_pred=Y_pred, average='weighted')
    r_score = recall_score(y_true=Y_test,
                           y_pred=Y_pred,
                           average='weighted',
                           labels=np.unique(Y_pred))

    # how many documents abstained
    probs_train = majority_model.predict_proba(L=L_train)
    df_train_filtered, probs_train_filtered = filter_unlabeled_dataframe(
        X=training_set, y=probs_train, L=L_train)

    # get number of false positives
    buckets = get_label_buckets(Y_test, Y_pred)
    true_positives, false_positives, true_negatives, false_negatives = (
        buckets.get((1, 1)), buckets.get((1, 0)), buckets.get(
            (0, 0)), buckets.get((0, 1)))
    # write analysis to file
    timestamp = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")

    with open(f"{'../output/logs/'}{output_file}_run_{timestamp}.txt",
              "w") as output_file:
        output_file.write(
            f"{'Majority Vote Accuracy:':<25} {majority_acc['accuracy'] * 100:.2f}%"
        )
        output_file.write(
            f"\n{'Majority Vote F1 Score:':<25} {majority_acc['f1'] * 100:.2f}%"
        )
        output_file.write(
            f"\n{'Label Model Accuracy:':<25} {label_model_acc['accuracy'] * 100:.2f}%"
        )
        output_file.write(
            f"\n{'Label Model F1 Score:':<25} {label_model_acc['f1'] * 100:.2f}%"
        )
        output_file.write(f"\n{'Precision Score:':<25} {p_score * 100:.2f}%")
        output_file.write(f"\n{'Recall Score:':<25} {r_score * 100:.2f}%")
        output_file.write(
            f"\n{'Abstained Data Points:':<25} {len(df_train_filtered)}")
        output_file.write(
            f"\n{'True Positives:':<25} {len(true_positives) if true_positives is not None else 0}"
        )
        output_file.write(
            f"\n{'False Positives:':<25} {len(false_positives) if false_positives is not None else 0}"
        )
        output_file.write(
            f"\n{'False Negatives:':<25} {len(false_negatives) if false_negatives is not None else 0}"
        )
        output_file.write(
            f"\n{'True Negatives:':<25} {len(true_negatives) if true_negatives is not None else 0}"
        )
        output_file.write(
            f"\n{'Abstained Positives:':<25} {len(buckets[(1, -1)])}")
        output_file.write(
            f"\n{'Abstained Negatives:':<25} {len(buckets[(0, -1)])}")
L_train = applier.apply(df=X_train)
L_dev = applier.apply(df=X_dev)

print('fitting Label Model')
label_model = LabelModel(cardinality=config['cardinality'], verbose=True)
label_model.fit(L_train=L_train, n_epochs=500, log_freq=100, seed=123)
label_model_acc = label_model.score(L=L_dev,
                                    Y=y_dev,
                                    tie_break_policy="random")["accuracy"]
print(f'label model acc: {label_model_acc}')

print('fitting Majority Label Voter model')
majority_model = MajorityLabelVoter(cardinality=config['cardinality'])
# preds_train = majority_model.predict(L=L_train)
majority_acc = majority_model.score(L=L_dev,
                                    Y=np.array(y_dev).reshape(-1, 1),
                                    tie_break_policy="random")["accuracy"]
print(f'majority_label_acc: {majority_acc}')

log_metric('majority_label_acc', majority_acc)
log_metric('label_model_acc', label_model_acc)

probs_train = label_model.predict_proba(L=L_train)
df_train_filtered, probs_train_filtered = filter_unlabeled_dataframe(
    X=X_train, y=probs_train, L=L_train)

print('setting up Label Model')
stop_words = config['stop_words']
custom_stop_words = text.ENGLISH_STOP_WORDS.union(stop_words)
# vectorizer = CountVectorizer(ngram_range=(1, 5))
vectorizer = TfidfVectorizer(stop_words=custom_stop_words).fit(
Exemple #4
0
# summary statistics for the LFs
lf_summary = LFAnalysis(L=L_train, lfs=lfs).lf_summary()
print(lf_summary)

# take the majority vote on a per-data point basis
majority_model = MajorityLabelVoter()
preds_train = majority_model.predict(L=L_train)

# use LabelModel to produce training labels
label_model = LabelModel(cardinality=2, verbose=True)
label_model.fit(L_train=L_train, n_epochs=500, log_freq=100, seed=123)

# result using majority-vote model
Y_test = data_test.label.values
majority_acc = majority_model.score(L=L_test,
                                    Y=Y_test,
                                    tie_break_policy="random")["accuracy"]
print(f"{'Majority Vote Accuracy:':<25} {majority_acc * 100:.1f}%")

# results using label model
label_model_acc = label_model.score(L=L_test,
                                    Y=Y_test,
                                    tie_break_policy="random")["accuracy"]
print(f"{'Label Model Accuracy:':<25} {label_model_acc * 100:.1f}%")

# representing each data point using "bag of n-gram" feature
probs_train = label_model.predict_proba(L=L_train)
vectorizer = CountVectorizer(ngram_range=(1, 5))
X_train = vectorizer.fit_transform(data_train.text.tolist())
X_test = vectorizer.transform(data_test.text.tolist())
Exemple #5
0
def majority_acc(line: np.ndarray, label_series: Series) -> float:
    majority_model = MajorityLabelVoter()
    maj_model_train_acc = majority_model.score(
        L=line, Y=label_series.values, tie_break_policy="random")["accuracy"]
    return maj_model_train_acc
Exemple #6
0
def majority_acc(L: np.ndarray, df: pd.DataFrame) -> float:
    majority_model = MajorityLabelVoter()
    maj_model_train_acc = majority_model.score(
        L=L, Y=df.label, tie_break_policy="random")["accuracy"]
    return maj_model_train_acc