Exemple #1
0
def LF_GiG_DOWNREGULATES(c):
    if re.search(ltp(downregulates_identifiers), " ".join(get_right_tokens(c[0], window=2)), flags=re.I):
        return -1
    elif re.search(ltp(downregulates_identifiers), " ".join(get_right_tokens(c[1], window=2)), flags=re.I):
        return -1
    elif re.search(ltp(downregulates_identifiers), get_text_between(c), flags=re.I):
        return -1
    else:
        return 0
Exemple #2
0
def LF_GiG_ASSOCIATION(c):
    if re.search(ltp(association_identifiers), " ".join(get_right_tokens(c[0], window=2)), flags=re.I):
        return -1
    elif re.search(ltp(association_identifiers), " ".join(get_right_tokens(c[1], window=2)), flags=re.I):
        return -1
    elif re.search(ltp(association_identifiers), get_text_between(c), flags=re.I):
        return -1
    else:
        return 0
Exemple #3
0
def LF_GiG_COMPOUND_IDENTIFICATIONS(c):
    if re.search(ltp(compound_indications), " ".join(get_right_tokens(c[0], window=2)), flags=re.I):
        return -1
    elif re.search(ltp(compound_indications), " ".join(get_right_tokens(c[1], window=2)), flags=re.I):
        return -1
    elif re.search(ltp(compound_indications), get_text_between(c), flags=re.I):
        return -1
    else:
        return 0
Exemple #4
0
def LF_GiG_GENE_IDENTIFIERS(c):
    cand1_text = " ".join(list(get_left_tokens(c[0], window=5)) + list(get_right_tokens(c[0], window=5)))
    cand2_text = " ".join(list(get_left_tokens(c[1], window=5)) + list(get_right_tokens(c[1], window=5)))

    if re.search(ltp(gene_identifiers), cand1_text, flags=re.I):
        return 1
    elif re.search(ltp(gene_identifiers), cand2_text, flags=re.I):
        return 1
    else:
        return 0
Exemple #5
0
def LF_GiG_CELL_IDENTIFICATIONS(c):
    gene1_tokens = list(get_left_tokens(c[0], window=5)) + list(get_right_tokens(c[0], window=5))
    gene2_tokens = list(get_left_tokens(c[0], window=5)) + list(get_right_tokens(c[0], window=5))

    if re.search(ltp(cell_indications), " ".join(gene1_tokens), flags=re.I):
        return -1
    elif re.search(ltp(cell_indications), " ".join(gene2_tokens), flags=re.I):
        return -1
    else:
        return 0
Exemple #6
0
def LF_CG_ANTIBODY(c):
    """
    This label function is designed to look for phrase
    antibody.
    """
    if "antibody" in c[1].get_span() or re.search("antibody", " ".join(get_right_tokens(c[1], window=3))):
        return 1
    elif "antibodies" in c[1].get_span() or re.search("antibodies", " ".join(get_right_tokens(c[1], window=3))):
        return 1
    else:
        return 0
Exemple #7
0
def LF_GiG_BINDING_IDENTIFICATIONS(c):
    gene1_tokens = list(get_left_tokens(c[0], window=5)) + list(get_right_tokens(c[0], window=5))
    gene2_tokens = list(get_left_tokens(c[0], window=5)) + list(get_right_tokens(c[0], window=5))

    if re.search(ltp(binding_identifiers), " ".join(gene1_tokens), flags=re.I):
        return 1
    elif re.search(ltp(binding_identifiers), " ".join(gene2_tokens), flags=re.I):
        return 1
    elif re.search(ltp(binding_identifiers), get_text_between(c), flags=re.I):
        return 1
    else:
        return 0
Exemple #8
0
def LF_other_verbs(c):
    if (len(other_verbs.intersection(get_between_tokens(c))) > 0) and not neg_nearby(c):
        return 1
    elif (len(other_verbs.intersection(get_left_tokens(c[0], window=20))) > 0) and not neg_nearby(c):
        return 1
    elif (len(other_verbs.intersection(get_left_tokens(c[1], window=20))) > 0) and not neg_nearby(c):
        return 1
    elif (len(other_verbs.intersection(get_right_tokens(c[0], window=20))) > 0) and not neg_nearby(c):
        return 1
    elif (len(other_verbs.intersection(get_right_tokens(c[1], window=20))) > 0) and not neg_nearby(c):
        return 1
    else:
        return 0
Exemple #9
0
def LF_isolate(c):
    if len(isolate.intersection(get_between_tokens(c))) > 0 and not neg_nearby(c):
        return 1
    elif len(isolate.intersection(get_left_tokens(c[0], window=20))) > 0 and not neg_nearby(c):
        return 1
    elif len(isolate.intersection(get_left_tokens(c[1], window=20))) > 0 and not neg_nearby(c):
        return 1
    elif len(isolate.intersection(get_right_tokens(c[0], window=20))) > 0 and not neg_nearby(c):
        return 1
    elif len(isolate.intersection(get_right_tokens(c[1], window=20))) > 0 and not neg_nearby(c):
        return 1
    else:
        return 0
Exemple #10
0
def LF_positive(c):
    if (len(positive.intersection(get_between_tokens(c))) > 0) and not neg_nearby(c):
        return 1
    elif (len(positive.intersection(get_left_tokens(c[0], window=20))) > 0) and not neg_nearby(c):
        return 1
    elif (len(positive.intersection(get_left_tokens(c[1], window=20))) > 0) and not neg_nearby(c):
        return 1
    elif (len(positive.intersection(get_right_tokens(c[0], window=20))) > 0) and not neg_nearby(c):
        return 1
    elif (len(positive.intersection(get_right_tokens(c[1], window=20))) > 0) and not neg_nearby(c):
        return 1
    else:
        return 0
def LF_DG_GENETIC_ABNORMALITIES(c):
    """
    This LF searches for key phraes that indicate a genetic abnormality
    """
    left_window = " ".join(get_left_tokens(c[0], window=10)) + " ".join(get_left_tokens(c[1], window=10))
    right_window = " ".join(get_right_tokens(c[0], window=10)) + " ".join(get_right_tokens(c[1], window=10))
    
    if re.search(ltp(genetic_abnormalities), get_text_between(c), flags=re.I):
        return 1
    elif re.search(ltp(genetic_abnormalities), left_window, flags=re.I):
        return 1
    elif re.search(ltp(genetic_abnormalities), right_window, flags=re.I):
        return 1
    return 0
def LF_DaG_DISEASE_SAMPLE(c):
    """
    This LF is designed to look for key phrases that indicate a sentence talking about tissue samples
    ex. cell line etc
    """
    left_window = " ".join(get_left_tokens(c[0], window=10)) + " ".join(get_left_tokens(c[1], window=10))
    right_window = " ".join(get_right_tokens(c[0], window=10)) + " ".join(get_right_tokens(c[1], window=10))
    
    if re.search(ltp(disease_sample_indicators), left_window, flags=re.I):
        return 1
    elif re.search(ltp(disease_sample_indicators), right_window, flags=re.I):
        return 1
    else:
        return 0
def LF_DaG_CELLULAR_ACTIVITY(c):
    """
    This LF is designed to look for key phrases that indicate activity within a cell.
    e.x. positive immunostating for an experiment
    """
    left_window = " ".join(get_left_tokens(c[0], window=10)) + " ".join(get_left_tokens(c[1], window=10))
    right_window = " ".join(get_right_tokens(c[0], window=10)) + " ".join(get_right_tokens(c[1], window=10))
    
    if re.search(ltp(cellular_activity), get_tagged_text(c), flags=re.I):
        return 1
    elif re.search(ltp(cellular_activity), left_window, flags=re.I):
        return 1
    elif re.search(ltp(cellular_activity), right_window, flags=re.I):
        return 1
    else:
        return 0
def LF_DEBUG(c):
    """
    This label function is for debugging purposes. Feel free to ignore.
    keyword arguments:
    c - The candidate object to be labeled
    """
    print(c)
    print()
    print("Left Tokens")
    print(list(get_left_tokens(c[0], window=5)))
    print()
    print("Right Tokens")
    print(list(get_right_tokens(c[0])))
    print()
    print("Between Tokens")
    print(list(get_between_tokens(c)))
    print()
    print("Tagged Text")
    print(get_tagged_text(c))
    print(re.search(r'{{B}} .* is a .* {{A}}', get_tagged_text(c)))
    print()
    print("Get between Text")
    print(get_text_between(c))
    print(len(get_text_between(c)))
    print()
    print("Parent Text")
    print(c.get_parent())
    print()
    return 0
def LF_gene(c):
    """
    If candidate has gene word near it
    """
    if "gene" in get_left_tokens(c[1]) or "gene" in get_right_tokens(c[1]):
        return 1
    return 0
Exemple #16
0
def LF_CD_CHECK_DEPRESSION_USAGE(c):
    if "depress" in c[1].get_span():
        if re.search(ltp(incorrect_depression_indication), " ".join(get_left_tokens(c[0], window=5)), flags=re.I):
            return -1
        elif re.search(ltp(incorrect_depression_indication), " ".join(get_right_tokens(c[0], window=5)), flags=re.I):
            return -1    
    return 0
Exemple #17
0
def LF_CD_TREATS(c):
    if re.search(ltp(treat_indication), get_text_between(c), flags=re.I):
        return 1
    elif re.search(ltp(treat_indication), " ".join(get_left_tokens(c[0], window=5)), flags=re.I):
        return 1
    elif re.search(ltp(treat_indication), " ".join(get_right_tokens(c[0], window=5)), flags=re.I):
        return 1
    else:
        return 0
def LF_neg_words(c):
    """
    If it mentions serum or intervention before or after gene then negative 
    """
    if len(neg_words.intersection(get_left_tokens(c[1], window=3))) > 0:
        return -1
    if len(neg_words.intersection(get_right_tokens(c[1], window=3))) > 0:
        return -1
    return 0
def LF_DaG_NO_ASSOCIATION(c):
    """
    This LF is designed to test if there is a key phrase that suggests
    a d-g pair is no an association.
    """
    left_window = " ".join(get_left_tokens(c[0], window=10)) + " ".join(get_left_tokens(c[1], window=10))
    right_window = " ".join(get_right_tokens(c[0], window=10)) + " ".join(get_right_tokens(c[1], window=10))
    
    if LF_DG_METHOD_DESC(c) or LF_DG_TITLE(c):
        return 0
    elif re.search(ltp(no_direct_association), get_text_between(c), flags=re.I):
        return -1
    elif re.search(ltp(no_direct_association), left_window, flags=re.I):
        return -1
    elif re.search(ltp(no_direct_association), right_window, flags=re.I):
        return -1
    else:
        return 0
def LF_DaG_WEAK_ASSOCIATION(c):
    """
    This label function is design to search for phrases that indicate a 
    weak association between the disease and gene
    """
    left_window = " ".join(get_left_tokens(c[0], window=10)) + " ".join(get_left_tokens(c[1], window=10))
    right_window = " ".join(get_right_tokens(c[0], window=10)) + " ".join(get_right_tokens(c[1], window=10))
    
    if LF_DG_METHOD_DESC(c) or LF_DG_TITLE(c):
        return 0
    elif re.search(ltp(weak_association), get_text_between(c), flags=re.I):
        return 1
    elif re.search(ltp(weak_association), left_window, flags=re.I):
        return 1
    elif re.search(ltp(weak_association), right_window, flags=re.I):
        return 1
    else:
        return 0
def LF_variation(c):
    """
    If variation keyword in close proximity then label as positive
    """
    if len(variation_words.intersection(get_left_tokens(c[1]))) > 0:
        return 1
    if len(variation_words.intersection(get_right_tokens(c[1]))) > 0:
        return 1
    return 0
def LF_DaG_ASSOCIATION(c):
    """
    This LF is designed to test if there is a key phrase that suggests
    a d-g pair is an association.
    """
    left_window = " ".join(get_left_tokens(c[0], window=10)) + " ".join(get_left_tokens(c[1], window=10))
    right_window = " ".join(get_right_tokens(c[0], window=10)) + " ".join(get_right_tokens(c[1], window=10))
    found_negation = not re.search(r'\b(not|no)\b', left_window, flags=re.I)

    if LF_DG_METHOD_DESC(c) or LF_DG_TITLE(c):
        return 0
    elif re.search(r'(?<!not )(?<!no )' + ltp(direct_association), get_text_between(c), flags=re.I) and found_negation:
        return 1
    elif re.search(r'(?<!not )(?<!no )' + ltp(direct_association), left_window, flags=re.I) and found_negation:
        return 1
    elif re.search(r'(?<!not )(?<!no )' + ltp(direct_association), right_window, flags=re.I) and found_negation:
        return 1
    else:
        return 0
Exemple #23
0
def LF_CG_DOWNREGULATES(c):
    """
    This label function is designed to look for phrases
    that could implies a compound decreasing the activity of a gene/protein
    """
    if re.search(ltp(downregulates), get_text_between(c), flags=re.I):
        return 1
    elif downregulates.intersection(get_right_tokens(c[1], window=2)):
        return 1
    else:
        return 0
Exemple #24
0
def LF_CG_GENE_RECEIVERS(c):
    """
    This label function is designed to look for phrases
    that imples a kinases or sort of protein that receives
    a stimulus to function
    """
    if re.search(ltp(gene_receivers), " ".join(get_right_tokens(c[1], window=4))) or re.search(ltp(gene_receivers), " ".join(get_left_tokens(c[1], window=4))):
        return 1
    elif re.search(ltp(gene_receivers), c[1].get_span(), flags=re.I):
        return 1
    else:
        return 0
Exemple #25
0
def LF_neg_assertions(c):
    if (len(negative.intersection(get_between_tokens(c))) > 0):
        return -1
    elif (len(negative.intersection(get_left_tokens(c[0], window=10))) > 0):
        return -1
    elif (len(negative.intersection(get_left_tokens(c[1], window=20))) > 0):
        return -1
    elif (len(negative.intersection(get_right_tokens(c[0], window=20))) > 0):
        return -1
#    elif (len(negative.intersection(get_right_tokens(c[1], window=20))) > 0):
#        return -1
    else:
        return 0
Exemple #26
0
def LF_CD_COMPOUND_INDICATION(c):
    """
    This label function is designed to look for phrases
    that implies a compound increaseing activity of a gene/protein
    """
    if re.search(ltp(compound_indications), get_text_between(c), flags=re.I):
        return 1
    elif re.search(ltp(compound_indications), " ".join(get_left_tokens(c[0], window=5)), flags=re.I):
        return 1
    elif re.search(ltp(compound_indications), " ".join(get_right_tokens(c[0], window=5)), flags=re.I):
        return 1
    else:
        return 0
Exemple #27
0
def LF_CD_PALLIATES(c):
    """
    This label function is designed to look for phrases
    that could imply a compound binding to a gene/protein
    """
    if re.search(ltp(palliates_indication), get_text_between(c), flags=re.I):
        return 1
    elif re.search(ltp(palliates_indication), " ".join(get_left_tokens(c[0], window=5)), flags=re.I):
        return 1
    elif re.search(ltp(palliates_indication), " ".join(get_right_tokens(c[0], window=5)), flags=re.I):
        return 1
    else:
        return 0
Exemple #28
0
def LF_CD_WEAKLY_TREATS(c):
    """
    This label function is designed to look for phrases
    that imply a compound binding to a gene/protein
    """
    if re.search(ltp(weak_treatment_indications), get_text_between(c), flags=re.I):
        return 1
    elif re.search(ltp(weak_treatment_indications), " ".join(get_left_tokens(c[0], window=5)), flags=re.I):
        return 1
    elif re.search(ltp(weak_treatment_indications), " ".join(get_right_tokens(c[0], window=5)), flags=re.I):
        return 1
    else:
        return 0
def LF_DEBUG(C):
    print "Left Tokens"
    print get_left_tokens(c, window=3)
    print
    print "Right Tokens"
    print get_right_tokens(c)
    print
    print "Between Tokens"
    print get_between_tokens(c)
    print
    print "Tagged Text"
    print get_tagged_text(c)
    print re.search(r'{{B}} .* is a .* {{A}}', get_tagged_text(c))
    print
    print "Get between Text"
    print get_text_between(c)
    print len(get_text_between(c))
    print
    print "Parent Text"
    print c.get_parent()
    print
    return 0
def LF_DG_IS_BIOMARKER(c):
    """
    This label function examines a sentences to determine of a sentence
    is talking about a biomarker. (A biomarker leads towards D-G assocation
    c - The candidate obejct being passed in
    """
    if LF_DG_METHOD_DESC(c) or LF_DG_TITLE(c):
        return 0
    elif re.search(ltp(biomarker_indicators), " ".join(get_left_tokens(c[1], window=10)), flags=re.I):
        return 1
    elif re.search(ltp(biomarker_indicators), " ".join(get_right_tokens(c[1], window=10)), flags=re.I):
        return 1
    else:
        return 0
Exemple #31
0
 def _get_search_func(self, c):
     """
     Enumerate the token search space for pattern matching
     :param c:
     :return:
     """
     if self.search == "sentence":
         return c.get_parent().__dict__[self.attrib]
     elif self.search == "between":
         return get_text_between(c).strip().split()
     elif self.search == "left":
         # use left-most Span
         span = c[0] if c[0].char_start < c[1].char_start else c[1]
         return get_left_tokens(span, window=self.window, attrib=self.attrib)
     elif self.search == "right":
         # use right-most Span
         span = c[0] if c[0].char_start > c[1].char_start else c[1]
         return get_right_tokens(span, window=self.window, attrib=self.attrib)
Exemple #32
0
def LF_and_married(c):
    return 1 if 'and' in get_between_tokens(c) and 'married' in get_right_tokens(c) else 0