def test_check_thresholds_gauss(self): # check tau for various privacy parameters epsilons = [0.1, 2.0] max_contribs = [1, 3] deltas = [10E-5, 10E-15] query = "SELECT COUNT(*) FROM PUMS.PUMS GROUP BY married" reader = PandasReader(df, schema) qp = QueryParser(schema) q = qp.query(query) for eps in epsilons: for d in max_contribs: for delta in deltas: privacy = Privacy(epsilon=eps, delta=delta) privacy.mechanisms.map[Stat.threshold] = Mechanism.gaussian # using slightly different formulations of same formula from different papers # make sure private_reader round-trips gaus_scale = math.sqrt(d) * math.sqrt( 2 * math.log(1.25 / delta)) / eps gaus_rho = 1 + gaus_scale * math.sqrt( 2 * math.log(d / math.sqrt(2 * math.pi * delta))) schema_c = copy.copy(schema) schema_c["PUMS.PUMS"].max_ids = d private_reader = PrivateReader(reader, metadata=schema_c, privacy=privacy) assert (private_reader._options.max_contrib == d) r = private_reader._execute_ast(q) assert (math.isclose(private_reader.tau, gaus_rho, rel_tol=0.03, abs_tol=2))
def setup_class(cls): meta = Metadata.from_file(meta_path) meta["PUMS.PUMS"].censor_dims = False df = pd.read_csv(csv_path) reader = PandasReader(df, meta) private_reader = PrivateReader(reader, meta, privacy=Privacy(epsilon=10.0, delta=0.1)) cls.reader = private_reader
def run_agg_query(self, df, metadata, query, confidence, get_exact=True): """ Run the query using the private reader and input query Get query response back """ reader = PandasReader(df, metadata) actual = 0.0 # VAR not supported in Pandas Reader. So not needed to fetch actual on every aggregation if get_exact: actual = reader.execute(query)[1:][0][0] private_reader = PrivateReader(reader, metadata, privacy=Privacy(epsilon=self.epsilon)) query_ast = private_reader.parse_query_string(query) noisy_values = [] low_bounds = [] high_bounds = [] for idx in range(self.repeat_count): res = private_reader._execute_ast(query_ast, True) # Disabled because confidence interval not available in report # interval = res.report[res.colnames[0]].intervals[confidence] # low_bounds.append(interval[0].low) # high_bounds.append(interval[0].high) noisy_values.append(res[1:][0][0]) return np.array(noisy_values), actual, low_bounds, high_bounds
def test_ok1(self): s = copy.copy(schema) s["PUMS.PUMS"]["income"].upper = None reader = PandasReader(df, s) private_reader = PrivateReader(reader, s, privacy=Privacy(epsilon=4.0)) rs = private_reader.execute_df( "SELECT income FROM PUMS.PUMS GROUP BY income")
def test_err1(self): s = copy.copy(schema) s["PUMS.PUMS"]["income"].upper = None reader = PandasReader(df, s) private_reader = PrivateReader(reader, s, privacy=Privacy(epsilon=4.0)) with pytest.raises(ValueError): rs = private_reader.execute_df("SELECT SUM(income) FROM PUMS.PUMS")
def test_dpsu_vs_korolova(self): query = "SELECT ngram, COUNT(*) as n FROM reddit.reddit GROUP BY ngram ORDER BY n desc" reader = PandasReader(df, schema) private_reader = PrivateReader(reader, schema, privacy=Privacy(epsilon=3.0)) private_reader.options.max_contrib = 10 result = private_reader.execute_df(query) private_reader_korolova = PrivateReader(reader, schema, privacy=Privacy(epsilon=3.0)) private_reader_korolova.options.dpsu = False private_reader_korolova.options.max_contrib = 10 korolova_result = private_reader_korolova.execute_df(query) assert len(result['n']) > len(korolova_result['n']) assert len(final_df) < len(df)
def QuerytoAST(self, query, meta, data): reader = PandasReader(meta, data) private_reader = PrivateReader(meta, reader, self.pp.epsilon) # query = 'SELECT Usage AS Usage, SUM(Usage) + 3 AS u FROM dataset.dataset GROUP BY Role' try: ast = private_reader.parse_query_string(query) except: return return ast
def test_execute_with_dpsu(self): schema_dpsu = copy.copy(schema) schema_dpsu["PUMS.PUMS"].use_dpsu = True reader = PandasReader(df, schema_dpsu) private_reader = PrivateReader(reader, schema_dpsu, 1.0) assert (private_reader._options.use_dpsu == True) query = QueryParser(schema_dpsu).queries( "SELECT COUNT(*) AS c FROM PUMS.PUMS GROUP BY married")[0] assert (private_reader._get_reader(query) is not private_reader.reader)
def test_viz_child_nodes(self): query = "SELECT AVG(age) AS my_sum FROM PUMS.PUMS GROUP BY age" reader = PandasReader(df, schema) private_reader = PrivateReader(reader, schema, privacy=Privacy(epsilon=1.0)) inner, outer = private_reader._rewrite(query) aggfuncs = outer.find_nodes(AggFunction) for aggfunc in aggfuncs: graph = aggfunc.visualize(n_trunc=30) assert (isinstance(graph, Digraph))
def test_execute_without_dpsu(self): schema_no_dpsu = copy.copy(schema) schema_no_dpsu["PUMS.PUMS"].use_dpsu = False reader = PandasReader(df, schema_no_dpsu) private_reader = PrivateReader(reader, schema_no_dpsu, privacy=Privacy(epsilon=1.0)) assert (private_reader._options.use_dpsu == False) query = QueryParser(schema_no_dpsu).queries( "SELECT COUNT(*) AS c FROM PUMS.PUMS GROUP BY married")[0] assert (private_reader._get_reader(query) is private_reader.reader)
def test_with_censor_dims(self): meta = Metadata.from_file(meta_path) df = pd.read_csv(csv_path) reader = PandasReader(df, meta) private_reader = PrivateReader(reader, meta, privacy=Privacy(epsilon=3.0)) query = "SELECT COUNT (*) AS foo, COUNT(DISTINCT pid) AS bar FROM PUMS.PUMS" q = QueryParser(meta).query(query) inner, outer = private_reader._rewrite_ast(q) ne = outer.select.namedExpressions assert (ne[0].expression.expression.name != 'keycount') assert (ne[1].expression.expression.name == 'keycount')
def test_viz_query_rewritten(self): query = "SELECT SUM(age) AS my_sum FROM PUMS.PUMS GROUP BY age" parsed_query = QueryParser(schema).query(query) reader = PandasReader(df, schema) private_reader = PrivateReader(reader, schema, privacy=Privacy(epsilon=1.0)) inner, outer = private_reader._rewrite_ast(parsed_query) graph = outer.visualize(n_trunc=30) assert (isinstance(graph, Digraph)) #graph.render('ast_digraph', view=True, cleanup=True) graph = inner.visualize(n_trunc=30) assert (isinstance(graph, Digraph))
def setup_class(self): meta = Metadata.from_file(meta_path) meta["PUMS.PUMS"].censor_dims = False meta["PUMS.PUMS"]["sex"].type = "int" meta["PUMS.PUMS"]["educ"].type = "int" meta["PUMS.PUMS"]["married"].type = "bool" df = pd.read_csv(csv_path) reader = PandasReader(df, meta) private_reader = PrivateReader(reader, meta, privacy=Privacy(epsilon=10.0, delta=10e-3)) self.reader = private_reader
def test_case_sensitive(self): sample = Table( "PUMS", "PUMS", [Int('pid', is_key=True), Int('"PiD"')], 150) meta = Metadata([sample], "csv") reader = PostgresReader("localhost", "PUMS", "admin", "password") private_reader = PrivateReader(reader, meta, privacy=Privacy(epsilon=3.0)) query = 'SELECT COUNT (DISTINCT pid) AS foo, COUNT(DISTINCT "PiD") AS bar FROM PUMS.PUMS' inner, outer = private_reader._rewrite(query) ne = outer.select.namedExpressions assert (ne[0].expression.expression.name == 'keycount') assert (ne[1].expression.expression.name != 'keycount')
def test_reuse_expression(self): meta = Metadata.from_file(meta_path) df = pd.read_csv(csv_path) reader = PandasReader(df, meta) private_reader = PrivateReader(reader, meta, privacy=Privacy(epsilon=3.0)) query = 'SELECT AVG(age), SUM(age), COUNT(age) FROM PUMS.PUMS' q = QueryParser(meta).query(query) inner, outer = private_reader._rewrite(query) names = unique( [f.name for f in outer.select.namedExpressions.find_nodes(Column)]) assert (len(names) == 2) assert ('count_age' in names) assert ('sum_age' in names)
def test_empty_result_count_typed_notau_prepost(self): schema_all = copy.deepcopy(schema) schema_all['PUMS.PUMS'].censor_dims = False reader = PandasReader(df, schema) query = QueryParser(schema).queries( "SELECT COUNT(*) as c FROM PUMS.PUMS WHERE age > 100")[0] private_reader = PrivateReader(reader, schema_all, privacy=Privacy(epsilon=1.0)) private_reader._execute_ast(query, True) for i in range(3): print(private_reader._options) trs = private_reader._execute_ast(query, True) print("empty query") print(trs) assert (len(trs) == 2)
def release(self, dataset: object) -> Report: """ Dataset is a collection of [Dataset Metadata, PandasReader] Releases response to SQL query based on the number of repetitions requested by eval_params if actual is set of False. """ private_reader = PrivateReader(dataset[0], dataset[1], self.privacy_params.epsilon) query_ast = private_reader.parse_query_string(self.algorithm) srs_orig = private_reader.reader._execute_ast_df(query_ast) noisy_values = [] for idx in range(self.eval_params.repeat_count): res = private_reader._execute_ast(query_ast, True) if not res[1:]: return Report({"__key__": "noisy_values_empty"}) else: noisy_values.append(res[1:][0][0]) return Report({"__key__": noisy_values})
def test_group_by_noisy_typed_order_desc(self): reader = PandasReader(df, schema) private_reader = PrivateReader(reader, schema, privacy=Privacy(epsilon=4.0)) rs = private_reader.execute_df("SELECT COUNT(*) AS c, married AS m FROM PUMS.PUMS GROUP BY married ORDER BY c DESC") assert(rs['c'][0] > rs['c'][1])
def run_agg_query_df(self, df, metadata, query, confidence, file_name="d1"): """ Run the query using the private reader and input query Get query response back for multiple dimensions and aggregations """ # Getting exact result reader = PandasReader(df, metadata) exact_res = reader.execute(query)[1:] private_reader = PrivateReader(reader, metadata, privacy=Privacy(epsilon=self.epsilon)) query_ast = private_reader.parse_query_string(query) # Distinguishing dimension and measure columns sample_res = private_reader._execute_ast(query_ast, True) headers = sample_res[0] dim_cols = [] num_cols = [] out_syms = query_ast.all_symbols() out_types = [s[1].type() for s in out_syms] out_col_names = [s[0] for s in out_syms] for col, ctype in zip(out_col_names, out_types): if ctype == "string": dim_cols.append(col) else: num_cols.append(col) # Repeated query and store results res = [] for idx in range(self.repeat_count): dim_rows = [] num_rows = [] singleres = private_reader._execute_ast_df(query_ast, cache_exact=True) # values = singleres[col] for col in dim_cols: dim_rows.append(singleres[col].tolist()) for col in num_cols: values = singleres[col].tolist() num_rows.append(list(zip(values))) res.extend(list(zip(*dim_rows, *num_rows))) exact_df = pd.DataFrame(exact_res, columns=headers) noisy_df = pd.DataFrame(res, columns=headers) # Add a dummy dimension column for cases where no dimensions available for merging D1 and D2 if len(dim_cols) == 0: dim_cols.append("__dim__") if dim_cols[0] == "__dim__": exact_df[dim_cols[0]] = ["key"] * len(exact_df) noisy_df[dim_cols[0]] = ["key"] * len(noisy_df) return noisy_df, exact_df, dim_cols, num_cols
def test_sum_noisy_postprocess(self): reader = PandasReader(df, schema) private_reader = PrivateReader(reader, schema, privacy=Privacy(epsilon=1.0)) trs = private_reader.execute_df("SELECT POWER(SUM(age), 2) as age_total FROM PUMS.PUMS") assert(trs['age_total'][0] > 1000 ** 2)
git_root_dir = subprocess.check_output( "git rev-parse --show-toplevel".split(" ")).decode("utf-8").strip() meta_path = os.path.join(git_root_dir, os.path.join("datasets", "PUMS_pid.yaml")) csv_path = os.path.join(git_root_dir, os.path.join("datasets", "PUMS_pid.csv")) from snsql.xpath.parse import XPath p = XPath() meta = Metadata.from_file(meta_path) pums = pd.read_csv(csv_path) query = 'SELECT AVG(age) + 3, STD(age), VAR(age), SUM(age) / 10, COUNT(age) + 2 FROM PUMS.PUMS' q = QueryParser(meta).query(query) reader = SqlReader.from_connection(pums, "pandas", metadata=meta) priv = PrivateReader(reader, meta, privacy=Privacy(epsilon=1.0)) subquery, root = priv._rewrite(query) class TestXPathExecutionNoRewrite: def test_all_root_descend(self): path = '//*' # returns value xx = p.parse(path) res = xx.evaluate(q) assert (len(res) > 40) assert (str(xx) == path) def test_all_with_condition(self): path = '//*[@left]' # returns value xx = p.parse(path) res = xx.evaluate(q)