def der_plot(step, der_index, f, ax1, ax2, ax3):

    np_filenames = []
    locations = []
    for idx in range(99):
        np_filenames.append("tube_pt_ppank_" + str(idx) + ".npy")
        locations.append(idx / 100.0)

    data_der = []
    for np_filename in np_filenames:
        arr_t, arr_der = load_from_np("./result/" + np_filename, der_index)
        data_der.append(arr_der[step])

    # shift locations so we could input it in analytic coordination.
    locations_aly = []
    for location in locations:
        location_aly = location - 0.5
        locations_aly.append(location_aly)

    analytic_solver = analytic.Solver()
    analytic_solution = analytic_solver.get_analytic_solution(locations_aly,
                                                              t=arr_t[step])
    data_der_analytic = []
    for location_idx in range(len(locations)):
        if der_index == 1:
            title = 'RHO'
        elif der_index == 2:
            title = 'M'
        elif der_index == 3:
            title = 'PRESSURE'
        else:
            title = 'UNKNOWN'
        data_der_analytic.append(analytic_solution[location_idx][der_index])

    data_der_deviation = []
    for idx in range(len(data_der)):
        data_der_deviation.append(data_der[idx] - data_der_analytic[idx])

    ax1.set_title('3D - ' + title)
    ax1.scatter(locations, data_der, s=10, c='b', marker='s')
    ax2.set_title('1D - ' + title)
    ax2.scatter(locations, data_der_analytic, s=10, c='b', marker='8')
    ax3.set_title('DEVIATION')
    ax3.scatter(locations, data_der_deviation, s=10, c='b', marker='o')

    return str(arr_t[step])
def load_from_analytic(location, arr_time):
    # load analytic solution data of 1D tube
    # note the coordination of analytic solution is different from the one that
    # SOLVCON used.
    mesh_1d = (location, )
    analytic_solver = analytic.Solver()
    vals = list()
    for t_step in arr_time:
        solution_analytic = analytic_solver.get_analytic_solution(mesh_1d,
                                                                  t=t_step)
        # refer to gas probe.py:Probe::__call__
        vlist = [t_step, solution_analytic[0][1], solution_analytic[0][3]]
        vals.append(vlist)
    arr_aly = np.array(vals, dtype='float64')
    arr_aly_t = arr_time
    arr_aly_rho = arr_aly[:, 1]
    arr_aly_p = arr_aly[:, 2]

    return arr_aly_t, arr_aly_rho, arr_aly_p
def load_from_analytic(location, arr_time, arr_idx_der):
    # load analytic solution data of 1D tube
    # note the coordination of analytic solution is different from
    # the one that SOLVCON used.
    mesh_1d = (location, )
    analytic_solver = analytic.Solver()
    # parse the analytic data object to be arr type data object
    vals = list()
    for t_step in arr_time:
        solution_analytic = analytic_solver.get_analytic_solution(mesh_1d,
                                                                  t=t_step)
        # refer to gas probe.py:Probe::__call__
        vlist = [t_step, solution_analytic[0][1], solution_analytic[0][3]]
        vals.append(vlist)
    arr_aly = np.array(vals, dtype='float64')
    # parsed.

    arr_aly_t = arr_time
    arr_aly_der = arr_aly[:, arr_idx_der]

    return arr_aly_t, arr_aly_der
Exemple #4
0
# Description:
#     An example to show how to use sodtube1d class

# solvers
import sodtube1d.generator_mesh as gmesh
import sodtube1d.solver_analytic as analytic
import sodtube1d.solver_cese as cese
import sodtube1d.solver_porting as solver_porting
# helper handlers
import sodtube1d.handler_data as hd
import sodtube1d.handler_plot as hp

generator_mesh = gmesh.Mesher()
generator_mesh.gen_mesh()
mesh = generator_mesh.get_mesh()
analytic_solver = analytic.Solver()
solution_analytic = analytic_solver.get_analytic_solution(mesh)

solver_cese = cese.Solver()
solver_cese.run_cese_iteration()
solution_cese = solver_cese.get_cese_solution()

solution_porting = solver_porting.get_specific_solution_for_unit_test_high_precision(
)

dm = hd.DataManager()
pm = hp.PlotManager()

#solution_deviation = dm.get_deviation(solution_analytic, solution_cese_porting)
solution_deviation = dm.get_deviation(solution_porting, solution_cese)
#solution_deviation_percent = dm.get_deviation_percent(solution_analytic, solution_cese_porting)
Exemple #5
0
def der_plot(step, der_index, base_subplot_idx):
    """Plot one plot of a derived quantity.

    Parameters
    ----------
    step : int
        nth step
    der_index : int
        index to indicate which derived quantity it means
    base_subplot_idx : int
        index to indicate which row this subplot should locate

    Returns
    -------
    tuples
        several attributes to compose of a subplot

    """

    np_filenames = []
    locations = []
    for idx in range(99):
        np_filenames.append("tube_pt_ppank_" + str(idx) + ".npy")
        locations.append(idx / 100.0)

    data_der = []
    for np_filename in np_filenames:
        arr_t, arr_der = load_from_np(
            "../sod-tube-working/result/" + np_filename, der_index)
        data_der.append(arr_der[step])

    # shift locations so we could input it in analytic coordination.
    locations_aly = []
    for location in locations:
        location_aly = location - 0.5
        locations_aly.append(location_aly)

    analytic_solver = analytic.Solver()
    analytic_solution = analytic_solver.get_analytic_solution(locations_aly,
                                                              t=arr_t[step])
    data_der_analytic = []
    for location_idx in range(len(locations)):
        if der_index == 1:
            title = 'RHO'
        elif der_index == 2:
            title = 'V-magnitude'
        elif der_index == 3:
            title = 'PRESSURE'
        else:
            title = 'UNKNOWN'
        data_der_analytic.append(analytic_solution[location_idx][der_index])

    data_der_deviation = []
    for idx in range(len(data_der)):
        data_der_deviation.append(data_der[idx] - data_der_analytic[idx])

    time_label = f"{arr_t[step]:.4f}"

    # 331 means index 1 position of a 3x3 matrix
    subplot_idx = 330 + base_subplot_idx
    ax1 = plt.subplot(subplot_idx, title='3D - ' + title)
    artist_3d = plt.scatter(locations, data_der, s=10, c='b', marker='s')
    text1 = plt.text(0.1, 0.08, "Time: " + time_label, transform=ax1.transAxes)

    subplot_idx = 330 + base_subplot_idx + 3
    ax2 = plt.subplot(subplot_idx, title='1D - ' + title)
    artist_1d = plt.scatter(locations,
                            data_der_analytic,
                            s=10,
                            c='b',
                            marker='8')
    text2 = plt.text(0.1, 0.08, "Time: " + time_label, transform=ax2.transAxes)

    subplot_idx = 330 + base_subplot_idx + 6
    ax3 = plt.subplot(subplot_idx, title='DEVIATION - ' + title)
    artist_dev = plt.scatter(locations,
                             data_der_deviation,
                             s=10,
                             c='b',
                             marker='o')
    text3 = plt.text(0.1, 0.08, "Time: " + time_label, transform=ax3.transAxes)

    return artist_3d, artist_1d, artist_dev, text1, text2, text3
def der_plot(step, der_index, base_subplot_idx):

    np_filenames = []
    locations = []
    for idx in range(99):
        np_filenames.append("tube_pt_ppank_" + str(idx) + ".npy")
        locations.append(idx / 100.0)

    data_der = []
    for np_filename in np_filenames:
        arr_t, arr_der = load_from_np("./result/" + np_filename, der_index)
        data_der.append(arr_der[step])

    # shift locations so we could input it in analytic coordination.
    locations_aly = []
    for location in locations:
        location_aly = location - 0.5
        locations_aly.append(location_aly)

    analytic_solver = analytic.Solver()
    analytic_solution = analytic_solver.get_analytic_solution(locations_aly,
                                                              t=arr_t[step])
    data_der_analytic = []
    for location_idx in range(len(locations)):
        if der_index == 1:
            title = 'RHO'
        elif der_index == 2:
            title = 'V-magnitude'
        elif der_index == 3:
            title = 'PRESSURE'
        else:
            title = 'UNKNOWN'
        data_der_analytic.append(analytic_solution[location_idx][der_index])

    data_der_deviation = []
    for idx in range(len(data_der)):
        data_der_deviation.append(data_der[idx] - data_der_analytic[idx])

    subplot_idx = 330 + base_subplot_idx
    ax1 = plt.subplot(subplot_idx, title='3D - ' + title)
    artist_3d = plt.scatter(locations, data_der, s=10, c='b', marker='s')
    text1 = plt.text(0.1,
                     0.08,
                     "Time: " + str(arr_t[step]),
                     transform=ax1.transAxes)

    subplot_idx = 330 + base_subplot_idx + 3
    ax2 = plt.subplot(subplot_idx, title='1D - ' + title)
    artist_1d = plt.scatter(locations,
                            data_der_analytic,
                            s=10,
                            c='b',
                            marker='8')
    text2 = plt.text(0.1,
                     0.08,
                     "Time: " + str(arr_t[step]),
                     transform=ax2.transAxes)

    subplot_idx = 330 + base_subplot_idx + 6
    ax3 = plt.subplot(subplot_idx, title='DEVIATION - ' + title)
    artist_dev = plt.scatter(locations,
                             data_der_deviation,
                             s=10,
                             c='b',
                             marker='o')
    text3 = plt.text(0.1,
                     0.08,
                     "Time: " + str(arr_t[step]),
                     transform=ax3.transAxes)

    return artist_3d, artist_1d, artist_dev, text1, text2, text3