def get_variant_spec_base(env, randomized, use_predictive_model, observation_mode, reward_type, single_obj_reward, all_random, trimodal_positions_choice, num_objects, model_dir, num_execution_per_step, policy, algorithm): algorithm_params = deep_update( ALGORITHM_PARAMS_BASE, ALGORITHM_PARAMS_ADDITIONAL.get(algorithm, {}), get_algorithm_params_roboverse(env, use_predictive_model), ) variant_spec = { 'git_sha': get_git_rev(__file__), 'environment_params': { 'training': { 'env': env, 'randomize_env': randomized, 'use_predictive_model': use_predictive_model, 'obs': observation_mode, 'reward_type': reward_type, 'single_obj_reward': single_obj_reward, 'all_random': all_random, 'trimodal_positions_choice': trimodal_positions_choice, 'num_objects': num_objects, 'model_dir': model_dir, 'num_execution_per_step': num_execution_per_step, 'kwargs': { 'image_shape': (48, 48, 3) } }, 'evaluation': tune.sample_from(lambda spec: (spec.get('config', spec)[ 'environment_params']['training'])), }, # 'policy_params': tune.sample_from(get_policy_params), 'policy_params': { 'class_name': 'FeedforwardGaussianPolicy', 'config': { 'hidden_layer_sizes': (M, M), 'squash': False, #True, 'observation_keys': None, 'preprocessors': None, }, }, 'exploration_policy_params': { 'class_name': 'ContinuousUniformPolicy', 'config': { 'observation_keys': tune.sample_from(lambda spec: (spec.get('config', spec)[ 'policy_params']['config'].get('observation_keys'))) }, }, 'Q_params': { 'class_name': 'double_feedforward_Q_function', 'config': { 'hidden_layer_sizes': (M, M), 'observation_keys': None, 'preprocessors': None, }, }, 'algorithm_params': algorithm_params, 'replay_pool_params': { 'class_name': 'SimpleReplayPool', 'config': { 'max_size': int(1e6), }, }, 'sampler_params': { 'class_name': 'SimpleSampler', 'config': { 'max_path_length': get_max_path_length_roboverse(env, use_predictive_model), } }, 'run_params': { 'host_name': get_host_name(), 'seed': tune.sample_from(lambda spec: np.random.randint(0, 10000)), 'checkpoint_at_end': True, 'checkpoint_frequency': tune.sample_from(get_checkpoint_frequency), 'checkpoint_replay_pool': False, }, } return variant_spec
def get_variant_spec_base(universe, domain, task, policy, algorithm): algorithm_params = deep_update( ALGORITHM_PARAMS_BASE, ALGORITHM_PARAMS_ADDITIONAL.get(algorithm, {}), get_algorithm_params(universe, domain, task), ) variant_spec = { 'git_sha': get_git_rev(__file__), 'environment_params': { 'training': { 'domain': domain, 'task': task, 'universe': universe, 'kwargs': get_environment_params(universe, domain, task), }, 'evaluation': tune.sample_from(lambda spec: ( spec.get('config', spec) ['environment_params'] ['training'] )), }, 'policy_params': tune.sample_from(get_policy_params), 'exploration_policy_params': { 'type': 'UniformPolicy', 'kwargs': { 'observation_keys': tune.sample_from(lambda spec: ( spec.get('config', spec) ['policy_params'] ['kwargs'] .get('observation_keys') )) }, }, 'Q_params': { 'type': 'double_feedforward_Q_function', 'kwargs': { 'hidden_layer_sizes': (M, M), 'observation_keys': None, 'observation_preprocessors_params': {} }, }, 'algorithm_params': algorithm_params, 'replay_pool_params': { 'type': 'SimpleReplayPool', 'kwargs': { 'max_size': int(1e6), }, }, 'sampler_params': { 'type': 'SimpleSampler', 'kwargs': { 'max_path_length': get_max_path_length(universe, domain, task), } }, 'run_params': { 'host_name': get_host_name(), 'seed': tune.sample_from( lambda spec: np.random.randint(0, 10000)), 'checkpoint_at_end': True, 'checkpoint_frequency': tune.sample_from(get_checkpoint_frequency), 'checkpoint_replay_pool': False, }, } return variant_spec
def get_variant_spec_base(universe, domain, task, policy, algorithm): algorithm_params = deep_update( ALGORITHM_PARAMS_BASE, ALGORITHM_PARAMS_ADDITIONAL.get(algorithm, {}), get_algorithm_params(universe, domain, task), ) variant_spec = { # doodad is complaining about this so we're just gonna hardcode a SHA #'git_sha': 'bd1dc29e166aca501af2e58a5057418126a3e435 master', #get_git_rev(__file__), 'environment_params': { 'training': { 'domain': domain, 'task': task, 'universe': universe, 'kwargs': get_environment_params(universe, domain, task), }, 'evaluation': tune.sample_from(lambda spec: (spec.get('config', spec)[ 'environment_params']['training'])), }, # 'policy_params': tune.sample_from(get_policy_params), 'policy_params': { 'class_name': 'FeedforwardGaussianPolicy', 'config': { 'hidden_layer_sizes': (M, M), 'squash': True, 'observation_keys': None, 'preprocessors': None, }, }, 'exploration_policy_params': { 'class_name': 'ContinuousUniformPolicy', 'config': { 'observation_keys': tune.sample_from(lambda spec: (spec.get('config', spec)[ 'policy_params']['config'].get('observation_keys'))) }, }, 'Q_params': { 'class_name': 'double_feedforward_Q_function', 'config': { 'hidden_layer_sizes': (M, M), 'observation_keys': None, 'preprocessors': None, }, }, 'algorithm_params': algorithm_params, 'replay_pool_params': { 'class_name': 'SimpleReplayPool', 'config': { 'max_size': int(1e6), }, }, 'sampler_params': { 'class_name': 'SimpleSampler', 'config': { 'max_path_length': get_max_path_length(universe, domain, task), } }, 'run_params': { 'host_name': get_host_name(), 'seed': tune.sample_from(lambda spec: np.random.randint(0, 10000)), 'checkpoint_at_end': True, 'checkpoint_frequency': tune.sample_from(get_checkpoint_frequency), 'checkpoint_replay_pool': False, }, } return variant_spec