def main(): time_limit = 60 print('==> Start to evaluate with Budget %d' % time_limit) iris = load_iris() X, y = iris.data, iris.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1, stratify=y) dm = DataManager(X_train, y_train) train_data = dm.get_data_node(X_train, y_train) test_data = dm.get_data_node(X_test, y_test) save_dir = './data/eval_exps/soln-ml' if not os.path.exists(save_dir): os.makedirs(save_dir) add_classifier(UserDefinedDecisionTree) clf = Classifier(time_limit=time_limit, output_dir=save_dir, enable_meta_algorithm_selection=False, include_algorithms=['UserDefinedDecisionTree'], ensemble_method=None, metric='acc') _start_time = time.time() clf.fit(train_data) print(clf.summary()) pred = clf.predict(test_data) print(accuracy_score(test_data.data[1], pred)) shutil.rmtree(save_dir)
def test_cls(): save_dir = './data/eval_exps/soln-ml' if not os.path.exists(save_dir): os.makedirs(save_dir) time_limit = 60 print('==> Start to evaluate with Budget %d' % time_limit) ensemble_method = 'bagging' eval_type = 'holdout' iris = load_iris() X, y = iris.data, iris.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=1, stratify=y) dm = DataManager(X_train, y_train) train_data = dm.get_data_node(X_train, y_train) test_data = dm.get_data_node(X_test, y_test) clf = Classifier(time_limit=time_limit, output_dir=save_dir, enable_meta_algorithm_selection=False, ensemble_method=ensemble_method, ensemble_size=10, evaluation=eval_type, metric='acc') clf.fit(train_data) print(clf.summary()) pred = clf.predict(test_data) print(accuracy_score(test_data.data[1], pred)) shutil.rmtree(save_dir)