def test_projection_translate_plus_minus_1(): trf = slt.RandomProjection(affine_transforms=slc.Stream([ slt.RandomTranslate(range_x=(1, 1), range_y=(1, 1), p=1), slt.RandomTranslate(range_x=(-1, -1), range_y=(-1, -1), p=1), ]), p=1) trf.sample_transform() assert np.array_equal(trf.state_dict['transform_matrix'], np.eye(3))
def test_translate_forward_backward_sampling(): stream = slc.Stream([ slt.RandomTranslate(range_x=(1, 1), range_y=(1, 1), p=1), slt.RandomTranslate(range_x=(-1, -1), range_y=(-1, -1), p=1), ]) trf = stream.optimize_stack(stream.transforms)[0] assert 1 == trf.state_dict[ 'translate_x'] # The settings will be overrided by the first transform assert 1 == trf.state_dict[ 'translate_y'] # The settings will be overrided by the first transform assert np.array_equal(trf.state_dict['transform_matrix'], np.eye(3))
def init_transforms(nc=1): if nc == 1: norm_mean_std = Normalize((0.1307, ), (0.3081, )) elif nc == 3: norm_mean_std = Normalize((0.4914, 0.4822, 0.4465), (0.247, 0.243, 0.261)) else: raise ValueError("Not support channels of {}".format(nc)) train_trf = Compose([ wrap2solt, slc.Stream([ # slt.ResizeTransform(resize_to=(32, 32), interpolation='bilinear'), slt.RandomScale(range_x=(0.95, 1.05), same=False, p=0.5), # slt.RandomShear(range_x=(-0.05, 0.05), p=0.5), slt.RandomRotate(rotation_range=(-10, 10), p=0.5), slt.RandomFlip(p=0.5, axis=1), # slt.RandomRotate(rotation_range=(-5, 5), p=0.5), slt.RandomTranslate(range_x=3, range_y=3), # slt.PadTransform(pad_to=34), # slt.CropTransform(crop_size=32, crop_mode='r'), # slt.ImageAdditiveGaussianNoise(p=1.0) ]), unpack_solt, ApplyTransform(norm_mean_std) ]) test_trf = Compose([ wrap2solt, slt.ResizeTransform(resize_to=(32, 32), interpolation='bilinear'), unpack_solt, ApplyTransform(norm_mean_std) ]) def custom_augment(img): tr = Compose([ wrap2solt, slc.Stream([ slt.ResizeTransform(resize_to=(32, 32), interpolation='bilinear'), slt.RandomScale(range_x=(0.9, 1.1), same=False, p=0.5), slt.RandomShear(range_x=(-0.05, 0.05), p=0.5), slt.RandomRotate(rotation_range=(-10, 10), p=0.5), # slt.RandomRotate(rotation_range=(-5, 5), p=0.5), slt.PadTransform(pad_to=36), slt.CropTransform(crop_size=32, crop_mode='r'), slt.ImageAdditiveGaussianNoise(p=1.0) ]), unpack_solt, ApplyTransform(norm_mean_std) ]) img_tr, _ = tr((img, 0)) return img_tr return train_trf, test_trf, custom_augment
def test_scale_when_range_x_is_none(translate_x, translate_y, expected): trf = slt.RandomTranslate(range_x=translate_x, range_y=translate_y, p=1) trf.sample_transform() assert (trf.state_dict['translate_x'], trf.state_dict['translate_y']) == expected
def test_translate_range_from_number(translate, expected): trf = slt.RandomTranslate(range_x=translate, range_y=translate) assert trf.translate_range_x == expected assert trf.translate_range_y == expected
def train_test_transforms(conf, mean=None, std=None): trf = conf['training'] prob = trf['transform_probability'] crop_size = tuple(trf['crop_size']) # Training transforms if trf['uCT']: train_transforms = [ slt.RandomProjection(slc.Stream([ slt.RandomRotate(rotation_range=tuple(trf['rotation_range']), p=prob), slt.RandomScale(range_x=tuple(trf['scale_range']), range_y=tuple(trf['scale_range']), same=False, p=prob), slt.RandomShear(range_x=tuple(trf['shear_range']), range_y=tuple(trf['shear_range']), p=prob), slt.RandomTranslate(range_x=trf['translation_range'], range_y=trf['translation_range'], p=prob) ]), v_range=tuple(trf['v_range'])), # Spatial slt.RandomFlip(p=prob), slt.PadTransform(pad_to=crop_size), slt.CropTransform(crop_mode='r', crop_size=crop_size), # Intensity #slt.ImageGammaCorrection(gamma_range=tuple(trf['gamma_range']), p=prob), #slt.ImageRandomHSV(h_range=tuple(trf['hsv_range']), # s_range=tuple(trf['hsv_range']), # v_range=tuple(trf['hsv_range']), p=prob), # Brightness/contrast slc.SelectiveStream([ slt.ImageRandomBrightness(brightness_range=tuple( trf['brightness_range']), p=prob), slt.ImageRandomContrast(contrast_range=trf['contrast_range'], p=prob) ]), # Noise slc.SelectiveStream([ slt.ImageSaltAndPepper(p=prob, gain_range=trf['gain_range_sp']), slt.ImageAdditiveGaussianNoise( p=prob, gain_range=trf['gain_range_gn']), slc.SelectiveStream([ slt.ImageBlur(p=prob, blur_type='g', k_size=(3, 7, 11), gaussian_sigma=tuple(trf['sigma'])), slt.ImageBlur(p=prob, blur_type='m', k_size=(3, 7, 11), gaussian_sigma=tuple(trf['sigma'])) ]) ]) ] else: train_transforms = [ # Projection slt.RandomProjection( slc.Stream([ slt.RandomRotate(rotation_range=tuple( trf['rotation_range']), p=prob), slt.RandomScale(range_x=tuple(trf['scale_range']), range_y=tuple(trf['scale_range']), same=False, p=prob), #slt.RandomShear(range_x=tuple(trf['shear_range']), # range_y=tuple(trf['shear_range']), p=prob), #slt.RandomTranslate(range_x=trf['translation_range'], range_y=trf['translation_range'], p=prob) ]), v_range=tuple(trf['v_range'])), # Spatial slt.RandomFlip(p=prob), slt.PadTransform(pad_to=crop_size[1]), slt.CropTransform(crop_mode='r', crop_size=crop_size), # Intensity # Add an empty stream #slc.SelectiveStream([]), slc.SelectiveStream([ slt.ImageGammaCorrection(gamma_range=tuple(trf['gamma_range']), p=prob), slt.ImageRandomHSV(h_range=tuple(trf['hsv_range']), s_range=tuple(trf['hsv_range']), v_range=tuple(trf['hsv_range']), p=prob) ]), slc.SelectiveStream([ slt.ImageRandomBrightness(brightness_range=tuple( trf['brightness_range']), p=prob), slt.ImageRandomContrast(contrast_range=trf['contrast_range'], p=prob) ]), slc.SelectiveStream([ slt.ImageSaltAndPepper(p=prob, gain_range=trf['gain_range_sp']), slt.ImageAdditiveGaussianNoise( p=prob, gain_range=trf['gain_range_gn']), slc.SelectiveStream([ slt.ImageBlur(p=prob, blur_type='g', k_size=(3, 7, 11), gaussian_sigma=tuple(trf['sigma'])), slt.ImageBlur(p=prob, blur_type='m', k_size=(3, 7, 11), gaussian_sigma=tuple(trf['sigma'])) ]) ]) ] train_trf = [ wrap_solt, #slc.Stream(train_transforms), slc.Stream([ slt.PadTransform(pad_to=crop_size[1]), slt.CropTransform(crop_mode='r', crop_size=crop_size) ]), unwrap_solt, ApplyTransform(numpy2tens, (0, 1, 2)) ] # Validation transforms val_trf = [ wrap_solt, slc.Stream([ slt.PadTransform(pad_to=crop_size[1]), slt.CropTransform(crop_mode='r', crop_size=crop_size) ]), unwrap_solt, ApplyTransform(numpy2tens, idx=(0, 1, 2)) ] # Test transforms test_trf = [unwrap_solt, ApplyTransform(numpy2tens, idx=(0, 1, 2))] # Use normalize_channel_wise if mean and std not calculated if mean is not None and std is not None: train_trf.append( ApplyTransform(partial(normalize_channel_wise, mean=mean, std=std))) if mean is not None and std is not None: val_trf.append( ApplyTransform(partial(normalize_channel_wise, mean=mean, std=std))) # Compose transforms train_trf_cmp = Compose(train_trf) val_trf_cmp = Compose(val_trf) test_trf_cmp = Compose(test_trf) return { 'train': train_trf_cmp, 'val': val_trf_cmp, 'test': test_trf_cmp, 'train_list': train_trf, 'val_list': val_trf, 'test_list': test_trf }
def train_test_transforms(conf, mean=None, std=None, crop_size=(512, 1024)): """ Compiles the different image augmentations that are used for input images. :param conf: Transformation parameters :param mean: Dataset image mean :param std: Dataset image std :param crop_size: Image size for the segmentation model :return: Compiled transformation objects, and lists of the used transforms """ trf = conf['training'] prob = trf['transform_probability'] # Training transforms # 3D transforms if trf['experiment'] == '3D': train_transforms = [ slc.SelectiveStream([ slc.Stream([ slt.RandomProjection( slc.Stream([ slt.RandomRotate(rotation_range=tuple( trf['rotation_range']), p=prob), slt.RandomScale(range_x=tuple(trf['scale_range']), range_y=tuple(trf['scale_range']), same=False, p=prob), #slt.RandomShear(range_x=tuple(trf['shear_range']), # range_y=tuple(trf['shear_range']), p=prob), slt.RandomTranslate( range_x=trf['translation_range'], range_y=trf['translation_range'], p=prob) ]), v_range=None #tuple(trf['v_range']) ), # Spatial slt.RandomFlip(p=prob), slt.PadTransform(pad_to=crop_size), slt.CropTransform(crop_mode='r', crop_size=crop_size), # Intensity # Brightness/contrast slc.SelectiveStream([ slt.ImageRandomBrightness(brightness_range=tuple( trf['brightness_range']), p=prob), slt.ImageRandomContrast( contrast_range=trf['contrast_range'], p=prob) ]), # Noise slc.SelectiveStream([ slt.ImageSaltAndPepper( p=prob, gain_range=trf['gain_range_sp']), slt.ImageAdditiveGaussianNoise( p=prob, gain_range=trf['gain_range_gn']), slc.SelectiveStream([ slt.ImageBlur(p=prob, blur_type='g', k_size=(3, 7, 11), gaussian_sigma=tuple(trf['sigma'])), slt.ImageBlur(p=prob, blur_type='m', k_size=(3, 7, 11), gaussian_sigma=tuple(trf['sigma'])) ]) ]) ]), # Empty stream slc.Stream([ slt.PadTransform(pad_to=crop_size), slt.CropTransform(crop_mode='r', crop_size=crop_size) ]) ]) ] # 2D transforms else: train_transforms = [ slc.SelectiveStream([ slc.Stream([ # Projection slt.RandomProjection( slc.Stream([ slt.RandomRotate(rotation_range=tuple( trf['rotation_range']), p=prob), slt.RandomScale(range_x=tuple(trf['scale_range']), range_y=tuple(trf['scale_range']), same=False, p=prob), # slt.RandomShear(range_x=tuple(trf['shear_range']), # range_y=tuple(trf['shear_range']), p=prob), slt.RandomTranslate( range_x=trf['translation_range'], range_y=trf['translation_range'], p=prob) ]), v_range=tuple(trf['v_range'])), # Spatial slt.RandomFlip(p=prob), slt.PadTransform(pad_to=crop_size), slt.CropTransform(crop_mode='r', crop_size=crop_size), # Intensity slc.SelectiveStream([ slt.ImageGammaCorrection(gamma_range=tuple( trf['gamma_range']), p=prob), slt.ImageRandomHSV(h_range=tuple(trf['hsv_range']), s_range=tuple(trf['hsv_range']), v_range=tuple(trf['hsv_range']), p=prob) ]), slc.SelectiveStream([ slt.ImageRandomBrightness(brightness_range=tuple( trf['brightness_range']), p=prob), slt.ImageRandomContrast( contrast_range=trf['contrast_range'], p=prob) ]), slc.SelectiveStream([ slt.ImageSaltAndPepper( p=prob, gain_range=trf['gain_range_sp']), slt.ImageAdditiveGaussianNoise( p=prob, gain_range=trf['gain_range_gn']), slc.SelectiveStream([ slt.ImageBlur(p=prob, blur_type='g', k_size=(3, 7, 11), gaussian_sigma=tuple(trf['sigma'])), slt.ImageBlur(p=prob, blur_type='m', k_size=(3, 7, 11), gaussian_sigma=tuple(trf['sigma'])) ]) ]) ]), # Empty stream slc.Stream([ slt.PadTransform(pad_to=crop_size), slt.CropTransform(crop_mode='r', crop_size=crop_size) ]) ]) ] # Compile training transforms train_trf = [ # Move to SOLT format wrap_solt, # Transforms slc.Stream(train_transforms), # Extract image unwrap_solt, # Move to tensor ApplyTransform(numpy2tens, (0, 1, 2)) ] # Validation transforms val_trf = [ wrap_solt, slc.Stream([ slt.PadTransform(pad_to=crop_size[1]), slt.CropTransform(crop_mode='r', crop_size=crop_size) ]), unwrap_solt, ApplyTransform(numpy2tens, idx=(0, 1, 2)) ] # Test transforms test_trf = [unwrap_solt, ApplyTransform(numpy2tens, idx=(0, 1, 2))] # Normalize train and val images if mean and std are given if mean is not None and std is not None: train_trf.append( ApplyTransform(partial(normalize_channel_wise, mean=mean, std=std))) if mean is not None and std is not None: val_trf.append( ApplyTransform(partial(normalize_channel_wise, mean=mean, std=std))) # Compose transforms train_trf_cmp = Compose(train_trf) val_trf_cmp = Compose(val_trf) test_trf_cmp = Compose(test_trf) return { 'train': train_trf_cmp, 'val': val_trf_cmp, 'test': test_trf_cmp, 'train_list': train_trf, 'val_list': val_trf, 'test_list': test_trf }