Exemple #1
0
	def nextGeneration(self):
		for i in range(0, self.groupSize):
			index = numpy.random.randint(0, self.populationSize - 1)

			self.crossoverIndices[i] = index

			self.crossoverGroupTourLengths[i] = self.entirePopulationLengths[index]
			self.crossoverGroup[i] = self.entirePopulation[index]

		self.sortCrossoverGroup()

		parentSelect = self.determineParents()
		children = crossover(self.tsp, self.crossoverGroup[parentSelect[0]], self.crossoverGroup[parentSelect[1]])

		child1Index = self.crossoverIndices[self.groupSize - 2]
		child2Index = self.crossoverIndices[self.groupSize - 1]

		#set the lowest two tours to the crossovered children
		self.entirePopulation[child1Index] = children[0]
		self.entirePopulation[child2Index] = children[1]

		#attempt to mutate the children
		self.entirePopulation[child1Index] = self.mutate(self.entirePopulation[child1Index], self.mutationRate)
		self.entirePopulation[child2Index] = self.mutate(self.entirePopulation[child2Index], self.mutationRate)

		#update the distance of the children
		child1Cost = calculateCost(self.entirePopulation[child1Index], self.tsp)
		child2Cost = calculateCost(self.entirePopulation[child2Index], self.tsp)

		self.entirePopulationLengths[child1Index] = child1Cost
		self.entirePopulationLengths[child2Index] = child2Cost

		self.updateDistance(child1Index, child1Cost)
		self.updateDistance(child2Index, child2Cost)
Exemple #2
0
def bestSolutionInPair(tsp, pair):
	firstSolutionCost = calculateCost(pair[0], tsp)
	secondSolutionCost = calculateCost(pair[1], tsp)

	if firstSolutionCost < secondSolutionCost:
		return pair[0], firstSolutionCost
	else:
		return pair[1], secondSolutionCost
Exemple #3
0
def averageRatioGreedySolution(tsp, randomSolutions, greedySolutions):
	sum = 0
	count = 0
	for randomSolution in randomSolutions:
		randomCost = calculateCost(randomSolution, tsp)

		for greedySolution in greedySolutions:
			greedyCost = calculateCost(greedySolution, tsp)

			sum += greedyCost/randomCost

		count += len(greedySolutions)

	return sum/count
Exemple #4
0
def greedySolutionQuality(tsp, randomSolutions, greedySolutions):
	sum = 0
	count = 0
	for randomSolution in randomSolutions:
		randomCost = calculateCost(randomSolution, tsp)

		for greedySolution in greedySolutions:
			greedyCost = calculateCost(greedySolution, tsp)

			if greedyCost < randomCost:
				sum += 1

		count += len(greedySolutions)

	return sum/count
Exemple #5
0
def constructGreedySolution(tsp, perm, alpha):
	candidate = {}
	# Seleciona um ponto da lista aleatoriamente
	problemSize = perm.shape[0]
	candidate["permutation"] = numpy.zeros(problemSize, dtype=numpy.int)
	candidate["permutation"][0] = perm[random.randrange(0, problemSize)]
	# Enquanto o tamanho do candidato não for igual ao tamanho da permutação
	for i in range(1, problemSize - 1):
		# Pega todos os pontos, exceto os já presentes na solução candidata
		candidates = [item for item in perm if item not in candidate["permutation"]]
		# Calcula o custo de adicionar uma característica à solução
		# A 'feature' ou característica é definida por quão longe os outros pontos estão do último elemento da lista de candidatos
		costs = []
		for item in candidates:
			costs.append(tsp.getCost(i - 1, item))
		# Determina o menor e o maior custo do determinado set
		rcl, maxCost, minCost = [], max(costs), min(costs)
		# Construimos o RCL da seguinte maneira:
		# Adicionamos o que for menor ou igual ao mínimo + o custo da característica pela fórmula da RCL
		# Quanto menor a distância aqui, menor o custo final do algoritmo
		# Custo de cada Feature:
		for index, cost in enumerate(costs):  # Para conseguir o index e o item enquanto faz o loop
			# IF Fcurrent <= Fmin + alpha * (Fmax-Fmin) THEN
			if (cost <= minCost + alpha * (maxCost - minCost)):
				# Adiciona ao RCL
				rcl.append(candidates[index])
		# Seleciona feature aleatório do RCL e adiciona à solução
		candidate["permutation"][i] = rcl[random.randrange(0, len(rcl))]

	# Calcula o custo final antes de retornar a solução candidata
	candidate["cost"] = calculateCost(candidate["permutation"], tsp)
	return candidate
Exemple #6
0
def averageTimesOffspringBetterSolution(tsp, parentSolutionPairs, childSolutionPairs):
	sum = 0
	for i in range(len(parentSolutionPairs)):
		parentPair = parentSolutionPairs[i]
		childPair = childSolutionPairs[i]

		for j in range(2):
			childCost = calculateCost(childPair[j], tsp)

			for k in range(2):
				parentCost = calculateCost(parentPair[k], tsp)

				if childCost < parentCost:
					sum += 1

	return sum/(len(parentSolutionPairs) * 4)
Exemple #7
0
def randomNeighborSolutionQuality(tsp, randomSolutions, randomNeighborSolutions):
	sum = 0
	count = 0
	for i in range(len(randomSolutions)):
		randomSolution = randomSolutions[i]
		randomCost = calculateCost(randomSolution, tsp)

		neighbors = randomNeighborSolutions[i]

		for j in range(len(neighbors)):
			neighborCost = calculateCost(neighbors[j], tsp)

			if neighborCost < randomCost:
				sum += 1

		count += len(neighbors)

	return sum/count
Exemple #8
0
def search(tsp,
           maxNoImprove,
           maxTabu,
           maxCandidates,
           timeLimit,
           updateLambda=None):
    start = time.time()
    t_end = start + timeLimit
    # construct a random tour
    best = {}
    best["permutation"] = generateInitialSolution(tsp)
    best["cost"] = calculateCost(best["permutation"], tsp)
    tabuList = set()

    totalIterations = 0
    if updateLambda:
        updateLambda(0, 0, 1, 1, start, maxNoImprove)

    iterNoImprove = 0

    while iterNoImprove < maxNoImprove and time.time() < t_end:
        # Generates queries using the local search 2-opt algorithm
        # stochastically, near the best candidate of this iteration.
        # Uses the tabu list not to visit vertices more than once
        candidates = []
        for index in range(0, maxCandidates):
            innerLambda = None

            candidates.append(generateCandidates(best, tabuList, tsp, t_end))

            totalIterations += 1

            updateLambda(totalIterations, best["cost"], 1, 1, start,
                         maxNoImprove)

        # Find the best candidate
        # sorts the list of candidates by cost
        bestCandidate, bestCandidateEdges = locateBestCandidate(candidates)
        # compares with the best candidate and updates it if necessary
        if bestCandidate["cost"] < best["cost"]:
            iterNoImprove = 0
            # defines the current candidate as the best
            best = bestCandidate
            # Update the taboo list
            for edge in bestCandidateEdges:
                if len(tabuList) < maxTabu:
                    tabuList.add(edge)
        else:
            iterNoImprove += 1

        totalIterations += 1

        if updateLambda:
            updateLambda(totalIterations, best["cost"], 1, 1, start,
                         maxNoImprove)

    return best["permutation"]
Exemple #9
0
def bestSolution(tsp, solutions):
    bestSolution = None
    minCost = sys.maxsize

    for i in range(len(solutions)):
        cost = calculateCost(solutions[i], tsp)

        if cost < minCost:
            minCost = cost
            bestSolution = solutions[i]

    return bestSolution, minCost
Exemple #10
0
def averageRatioNeighborsWithBetterSolution(tsp, randomSolutions, randomNeighborSolutions):
	sum = 0.0
	for i in range(len(randomSolutions)):
		randomSolution = randomSolutions[i]
		randomCost = calculateCost(randomSolution, tsp)

		neighbors = randomNeighborSolutions[i]
		_, neighborCost = bestSolution(tsp, neighbors)

		sum += neighborCost/randomCost

	return sum/len(randomSolutions)
Exemple #11
0
def proportionsNeighborsWithBetterSolution(tsp, randomSolutions, randomNeighborSolutions):
	sum = 0
	for i in range(len(randomSolutions)):
		randomSolution = randomSolutions[i]
		randomCost = calculateCost(randomSolution, tsp)

		neighbors = randomNeighborSolutions[i]
		_, neighborCost = bestSolution(tsp, neighbors)

		if neighborCost < randomCost:
			sum += 1

	return sum/len(randomSolutions)
Exemple #12
0
def generateCandidates(best, tabuList, tsp, timeLimit):
    permutation, edges, result = [], None, {}
    while len(permutation) < 1 or isTabu(best["permutation"], tabuList,
                                         timeLimit):
        permutation, edges = stochasticTwoOptWithEdges(best["permutation"])

    candidate = {}
    candidate["permutation"] = permutation
    candidate["cost"] = calculateCost(candidate["permutation"], tsp)
    result["candidate"] = candidate
    result["edges"] = edges

    return result
Exemple #13
0
def localSearch(tsp, best, maxIter, timeLimit, updateLambda = None):
	count = 0
	totalIterations = 0
	while count < maxIter and time.time() < timeLimit:
		candidate = {}
		candidate["permutation"] = stochasticTwoOpt(best["permutation"])
		candidate["cost"] = calculateCost(candidate["permutation"], tsp)

		totalIterations += 1

		if candidate["cost"] < best["cost"]:
			best, count = candidate, 0

			if updateLambda:
				updateLambda(totalIterations, best["cost"], 1, 1)
		else:
			count += 1

	return best, totalIterations
Exemple #14
0
	def __init__(self, tsp, mutationRate, populationSize):
		self.tsp = tsp
		# Defaults to 10
		self.mutationRate = mutationRate
		# Defaults to 800
		self.populationSize = populationSize #s/b 100,000
		self.groupSize = 10 #must be >= 5
		self.entirePopulation = numpy.empty((self.populationSize, self.tsp.getSize()), dtype = int)
		self.entirePopulationLengths = numpy.empty(self.populationSize)
		self.minDistance = None
		self.minIndex = None

		self.crossoverGroup = numpy.empty((self.groupSize, self.tsp.getSize()), dtype = int)
		self.crossoverIndices = numpy.empty(self.groupSize, dtype = int)

		self.crossoverGroupTourLengths = numpy.empty(self.groupSize)

		for i in range(0, self.populationSize):
			tour = generateInitialSolution(tsp)
			self.entirePopulation[i] = tour
			self.entirePopulationLengths[i] = calculateCost(tour, self.tsp)
Exemple #15
0
 def energy(self):
     """Calculates the length of the route."""
     return calculateCost(self.state, self.tsp)