Exemple #1
0
def find_gt_bboxes(id, data_folder, segment_name, start_frame, end_frame):
    """ This function is for finding the gt bboxes
    Args:
        id (str): id of the tracklet
        gt_folder (str): root for data storage
        segment_name (str): the segment to look at
        start_frame (int): which frame to search
    Return
        list of bboxes
    """
    gt_info = np.load(os.path.join(data_folder, 'gt_info',
                                   '{:}.npz'.format(segment_name)),
                      allow_pickle=True)
    ego_info = np.load(os.path.join(data_folder, 'ego_info',
                                    '{:}.npz'.format(segment_name)),
                       allow_pickle=True)
    bboxes, ids = gt_info['bboxes'][start_frame], gt_info['ids'][start_frame]
    index = ids.index(id)

    gts = list()
    for i in range(start_frame + 1, end_frame + 1):
        # first frame needs no evaluation
        # so begin from start_frame + 1
        frame_bboxes = gt_info['bboxes'][i]
        frame_ids = gt_info['ids'][i]
        index = frame_ids.index(id)
        bbox = frame_bboxes[index]
        bbox = BBox.array2bbox(bbox)

        ego_matrix = ego_info[str(i)]
        bbox = BBox.bbox2world(ego_matrix, bbox)
        gts.append(bbox)

    return gts
Exemple #2
0
def find_bboxes(id, data_folder, segment_name, start_frame, end_frame):
    """ In the SOT, the beginning frame is a GT BBox
        This function is for finding the gt bbox
    Args:
        id (str): id of the tracklet
        data_folder (str): root for data storage
        segment_name (str): the segment to look at
        start_frame (int): which frame to search
    Return
        BBox (numpy array): [x, y, z, h, l, w, h]
    """
    gt_info = np.load(os.path.join(data_folder, 'gt_info',
                                   '{:}.npz'.format(segment_name)),
                      allow_pickle=True)
    ego_info = np.load(os.path.join(data_folder, 'ego_info',
                                    '{:}.npz'.format(segment_name)),
                       allow_pickle=True)
    bboxes, ids = gt_info['bboxes'][start_frame], gt_info['ids'][start_frame]
    index = ids.index(id)
    start_bbox = bboxes[index]

    gts = list()
    for i in range(start_frame, end_frame + 1):
        frame_bboxes = gt_info['bboxes'][i]
        frame_ids = gt_info['ids'][i]
        index = frame_ids.index(id)
        bbox = frame_bboxes[index]
        bbox = BBox.array2bbox(bbox)

        ego_matrix = ego_info[str(i)]
        bbox = BBox.bbox2world(ego_matrix, bbox)
        gts.append(bbox)

    return start_bbox, gts
Exemple #3
0
 def preprocess(self):
     """ Some data need eplicit transformation to the world coordinate:
         point cloud, detection bboxes
     """
     self.pc = utils.pc2world(self.ego, self.pc)
     if self.dets is not None:
         self.dets = [BBox.bbox2world(self.ego, det) for det in self.dets]
     return
Exemple #4
0
def tracker_api(configs,
                id,
                start_bbox,
                start_frame,
                data_loader,
                track_len,
                gts=None,
                visualize=False):
    """ api for the tracker
    Args:
        configs: model configuration read from config.yaml
        id (str): each tracklet has an id
        start_bbox ([x, y, z, yaw, l, w, h]): the beginning location of this id
        data_loader (an iterator): iterator returning data of each incoming frame
    Return:
        {
            frame_number0: pred_bbox0,
            frame_number1: pred_bbox1,
            ...
            frame_numberN: pred_bboxN
        }
    """
    tracker = sot_3d.Tracker(id=id,
                             configs=configs,
                             start_bbox=start_bbox,
                             start_frame=start_frame,
                             track_len=track_len)
    tracklet_result = dict()
    for frame_index in range(track_len):
        print('////////////////////////////////////////')
        print('Processing {:} {:} / {:}'.format(id, frame_index + 1,
                                                track_len))
        # initialize a tracker
        frame_data = next(data_loader)
        # if the first frame, add the start_bbox
        input_bbox = None
        if frame_index == 0:
            input_bbox = BBox.bbox2world(frame_data['ego'],
                                         BBox.array2bbox(start_bbox))
        input_data = sot_3d.FrameData(ego_info=frame_data['ego'],
                                      pc=frame_data['pc'],
                                      start_bbox=input_bbox,
                                      terrain=frame_data['terrain'],
                                      dets=frame_data['dets'])

        # run the frame level tracking
        frame_output = tracker.track(input_data)
        # the frame 0 may produce no output
        if not frame_output:
            continue

        # if gt is not None, we may compare our prediction with gt
        frame_result = compare_to_gt(frame_index, frame_output, gts)
        max_frame_key = max(list(frame_result.keys()))
        for i in range(max_frame_key + 1):
            print('BBox0    : {:}'.format(frame_result[i]['bbox0']))
            print('BBox1    : {:}'.format(frame_result[i]['bbox1']))
            print('Motion   : {:}'.format(frame_result[i]['motion']))
            if gts:
                print('GT BBox0 : {:}'.format(frame_result[i]['gt_bbox0']))
                print('GT BBox1 : {:}'.format(frame_result[i]['gt_bbox1']))
                print('GT Motion: {:}'.format(frame_result[i]['gt_motion']))
                print('IOUS     : {:}  {:}'.format(frame_result[i]['iou2d'],
                                                   frame_result[i]['iou3d']))
            print('\n')
        tracklet_result[frame_index +
                        start_frame] = frame_result[max_frame_key]

        if visualize:
            frame_result_visualization(frame_result[max_frame_key],
                                       tracker.input_data.pc)
    return tracklet_result