def main(): srnet = nn.SRNET() dataset = dman.DataSet() sess = tf.compat.v1.InteractiveSession() sess.run(tf.compat.v1.global_variables_initializer()) saver = tf.compat.v1.train.Saver() # tfp.training(sess=sess, neuralnet=srnet, saver=saver, dataset=dataset, epochs=FLAGS.epoch, batch_size=FLAGS.batch) tfp.validation(sess=sess, neuralnet=srnet, saver=saver, dataset=dataset)
def main(): dataset = dman.DataSet(setname=FLAGS.setname, tr_ratio=FLAGS.tr_ratio) neuralnet = nn.ConvNet(data_dim=dataset.data_dim, channel=dataset.channel, num_class=dataset.num_class, learning_rate=FLAGS.lr) sess = tf.InteractiveSession() sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() tfp.training(sess=sess, neuralnet=neuralnet, saver=saver, dataset=dataset, epochs=FLAGS.epoch, batch_size=FLAGS.batch, dropout=FLAGS.dropout) tfp.validation(sess=sess, neuralnet=neuralnet, saver=saver, dataset=dataset)
def main(): if (not (torch.cuda.is_available())): FLAGS.ngpu = 0 device = torch.device("cuda" if ( torch.cuda.is_available() and FLAGS.ngpu > 0) else "cpu") srnet = nn.NeuralNet(device=device, ngpu=FLAGS.ngpu) dataset = dman.DataSet() solver.training(neuralnet=srnet, dataset=dataset, epochs=FLAGS.epoch, batch_size=FLAGS.batch) solver.validation(neuralnet=srnet, dataset=dataset)
def main(): srnet = nn.SRNET() dataset = dman.DataSet() sess = tf.InteractiveSession() sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() tfp.training(sess=sess, neuralnet=srnet, saver=saver, dataset=dataset, iteration=int(FLAGS.iter), batch_size=FLAGS.batch) tfp.validation(sess=sess, neuralnet=srnet, saver=saver, dataset=dataset)
def main(): training_keys = ['100'] dataset = dman.DataSet(key_tr=training_keys) lstm = nn.LSTM_Model(batch_size=FLAGS.batch, data_dim=dataset.data_dim) sess = tf.InteractiveSession() sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() tfp.training(sess=sess, neuralnet=lstm, saver=saver, dataset=dataset, batch_size=FLAGS.batch, sequence_length=FLAGS.trainlen, iteration=FLAGS.iter) tfp.validation(sess=sess, neuralnet=lstm, saver=saver, dataset=dataset, sequence_length=FLAGS.testlen)