Exemple #1
0
    def __init__(self, latent_dim=2, z_prior='gaussian'):

        self.z_prior = z_prior

        self.enc_l1 = L.Linear((784, 1000))
        self.enc_b1 = L.BatchNormalization(1000)
        self.enc_l2 = L.Linear((1000, 1000))
        self.enc_b2 = L.BatchNormalization(1000)
        self.enc_l3 = L.Linear((1000, latent_dim))
        self.enc_b3 = L.BatchNormalization(latent_dim)

        self.dec_l1 = L.Linear((latent_dim, 1000))
        self.dec_b1 = L.BatchNormalization(1000)
        self.dec_l2 = L.Linear((1000, 1000))
        self.dec_b2 = L.BatchNormalization(1000)
        self.dec_l3 = L.Linear((1000, 784))

        self.D_l1 = L.Linear((latent_dim, 500))
        self.D_b1 = L.BatchNormalization(500)
        self.D_l2 = L.Linear((500, 500))
        self.D_b2 = L.BatchNormalization(500)
        self.D_l3 = L.Linear((500, 1))

        self.model_params = self.enc_l1.params + self.enc_l2.params + self.enc_l3.params \
                          + self.dec_l1.params + self.dec_l2.params + self.dec_l3.params \
                          + self.enc_b1.params + self.enc_b2.params + self.enc_b3.params \
                          + self.dec_b1.params + self.dec_b2.params
        self.D_params = self.D_l1.params + self.D_l2.params + self.D_l3.params
        self.rng = RandomStreams(seed=numpy.random.randint(1234))
Exemple #2
0
 def __init__(self, layer_sizes):
     self.linear_layers = []
     self.bn_layers = []
     self.act_layers = []
     self.params = []
     for m, n in zip(layer_sizes[:-1], layer_sizes[1:]):
         l = L.Linear(size=(m, n))
         bn = L.BatchNormalization(size=(n))
         self.linear_layers.append(l)
         self.bn_layers.append(bn)
         self.params += l.params + bn.params
     for i in range(len(self.linear_layers) - 1):
         self.act_layers.append(L.relu)
     self.act_layers.append(L.softmax)
Exemple #3
0
 def __init__(self):
     self.l1 = L.Linear(size=(100, 100))
     self.l2 = L.Linear(size=(100, 2))
     self.params = self.l1.params + self.l2.params
Exemple #4
0
 def __init__(self, drate=0.5):
     self.drate = drate
     self.l1 = L.Linear(size=(100, 100))
     self.l2 = L.Linear(size=(100, 2))
     self.params = self.l1.params + self.l2.params