def __init__(self,
              in_channels,
              out_channels,
              ksize=3,
              pad=1,
              activation=F.relu):
     super(OptimizedBlock, self).__init__()
     initializer = chainer.initializers.GlorotUniform(math.sqrt(2))
     initializer_sc = chainer.initializers.GlorotUniform()
     self.activation = activation
     with self.init_scope():
         self.c1 = SNConvolution2D(in_channels,
                                   out_channels,
                                   ksize=ksize,
                                   pad=pad,
                                   initialW=initializer)
         self.c2 = SNConvolution2D(out_channels,
                                   out_channels,
                                   ksize=ksize,
                                   pad=pad,
                                   initialW=initializer)
         self.c_sc = SNConvolution2D(in_channels,
                                     out_channels,
                                     ksize=1,
                                     pad=0,
                                     initialW=initializer_sc)
 def __init__(self,
              in_channels,
              out_channels,
              hidden_channels=None,
              ksize=3,
              pad=1,
              activation=F.relu,
              downsample=False):
     super(Block, self).__init__()
     initializer = chainer.initializers.GlorotUniform(math.sqrt(2))
     initializer_sc = chainer.initializers.GlorotUniform()
     self.activation = activation
     self.downsample = downsample
     hidden_channels = in_channels if hidden_channels is None else hidden_channels
     with self.init_scope():
         self.c1 = SNConvolution2D(in_channels,
                                   hidden_channels,
                                   ksize=ksize,
                                   pad=pad,
                                   initialW=initializer)
         self.c2 = SNConvolution2D(hidden_channels,
                                   out_channels,
                                   ksize=ksize,
                                   pad=pad,
                                   initialW=initializer)
         self.c_sc = SNConvolution2D(in_channels,
                                     out_channels,
                                     ksize=1,
                                     pad=0,
                                     initialW=initializer_sc)
 def __init__(self, in_size, in_channel, out_channel):
     super(ResBlock, self).__init__()
     with self.init_scope():
         self.HyperBN = HyperBatchNormalization(in_size, in_channel)
         self.conv0 = SNConvolution2D(in_channel, out_channel, 3, 1, 1)
         self.HyperBN_1 = HyperBatchNormalization(in_size, out_channel)
         self.conv1 = SNConvolution2D(out_channel, out_channel, 3, 1, 1)
         self.conv_sc = SNConvolution2D(in_channel, out_channel, 1, 1, 0)
 def __init__(self, ch):
     self.ch = ch
     super(NonLocalBlock, self).__init__()
     with self.init_scope():
         self.theta = SNConvolution2D(ch, ch // 8, 1, 1, 0, nobias=True)
         self.phi = SNConvolution2D(ch, ch // 8, 1, 1, 0, nobias=True)
         self.g = SNConvolution2D(ch, ch // 2, 1, 1, 0, nobias=True)
         self.o_conv = SNConvolution2D(ch // 2, ch, 1, 1, 0, nobias=True)
         self.gamma = L.Parameter(np.array(0, dtype="float32"))
Exemple #5
0
    def __init__(self, in_channels, out_channels, hidden_channels=None, ksize=3, pad=1,
                 activation=F.relu, downsample=False):
        super(Block, self).__init__()
        initializer = chainer.initializers.GlorotUniform(math.sqrt(2))
        initializer_sc = chainer.initializers.GlorotUniform()
        self.activation = activation
        self.downsample = downsample
        self.learnable_sc = (in_channels != out_channels) or downsample
        hidden_channels = in_channels if hidden_channels is None else hidden_channels
        with self.init_scope():
            self.c1 = SNConvolution2D(in_channels, hidden_channels, ksize=ksize, pad=pad, initialW=initializer)
            self.c2 = SNConvolution2D(hidden_channels, out_channels, ksize=ksize, pad=pad, initialW=initializer)
            if self.learnable_sc:
                self.c_sc = SNConvolution2D(in_channels, out_channels, ksize=1, pad=0, initialW=initializer_sc)
                self.c_sc.u = np.ones((1, out_channels)).astype(np.float32)

            self.c1.u = np.ones((1, 128)).astype(np.float32)
            self.c2.u = np.ones((1, 128)).astype(np.float32)
 def __init__(self, ch=96):
     self.ch = ch
     super(Generator, self).__init__()
     with self.init_scope():
         self.linear = L.Linear(1000, 128, nobias=True)
         self.G_linear = SNLinear(20, 4 * 4 * 16 * ch)
         self.GBlock = ResBlock(148, 16 * ch, 16 * ch)
         self.GBlock_1 = ResBlock(148, 16 * ch, 8 * ch)
         self.GBlock_2 = ResBlock(148, 8 * ch, 8 * ch)
         self.GBlock_3 = ResBlock(148, 8 * ch, 4 * ch)
         self.GBlock_4 = ResBlock(148, 4 * ch, 2 * ch)
         self.attention = NonLocalBlock(2 * ch)
         self.GBlock_5 = ResBlock(148, 2 * ch, ch)
         self.ScaledCrossReplicaBN = L.BatchNormalization(ch)
         self.conv_2d = SNConvolution2D(ch, 3, 3, 1, 1)