Exemple #1
0
    def RecommendByDT(train_data, train_data_y, test_data, test_data_y, recommendNum=5):

        grid_parameters = [
            {'min_samples_leaf': [2, 4, 8, 16, 32, 64], 'max_depth': [2, 4, 6, 8]}]  # 调节参数

        from sklearn.tree import DecisionTreeClassifier
        from sklearn.model_selection import GridSearchCV
        clf = DecisionTreeClassifier()
        clf = GridSearchCV(clf, param_grid=grid_parameters, n_jobs=-1)
        clf.fit(train_data, train_data_y)

        predictions = clf.predict_proba(test_data)
        print(clf.best_params_)
        """预测结果转化为data array"""
        predictions = DataProcessUtils.convertMultilabelProbaToDataArray(predictions)
        print(predictions)

        recommendList = DataProcessUtils.getListFromProbable(predictions, range(1, train_data_y.shape[1] + 1),
                                                             recommendNum)
        answerList = test_data_y
        print(predictions)
        print(test_data_y)
        print(recommendList)
        print(answerList)
        return [recommendList, answerList]
Exemple #2
0
    def RecommendByRF(train_data, train_data_y, test_data, test_data_y, recommendNum=5):
        """多标签分类  随机森林"""

        clf = RandomForestClassifier(n_estimators=50, max_depth=5, n_jobs=-1)
        """对弱分类器数量做调参数量"""
        # param_test1 = {'n_estimators': range(200, 250, 10)}
        # clf = GridSearchCV(estimator=clf, param_grid=param_test1)
        # print(clf.best_params_)
        # print(clf.best_params_, clf.best_score_)
        """对决策树的参数做调参"""
        # param_test2 = {'max_depth': range(6, 8, 1), 'min_samples_split': range(18, 22, 1)}
        # clf = GridSearchCV(estimator=clf, param_grid=param_test1, cv=5, n_jobs=5)

        clf.fit(train_data, train_data_y)

        predictions = clf.predict_proba(test_data)
        # print(clf.best_params_)
        # print(clf.best_score_)
        # print(clf.cv_results_)
        """预测结果转化为data array"""
        predictions = DataProcessUtils.convertMultilabelProbaToDataArray(predictions)
        print(predictions)

        recommendList = DataProcessUtils.getListFromProbable(predictions, range(1, train_data_y.shape[1] + 1),
                                                             recommendNum)
        answerList = test_data_y
        print(predictions)
        print(test_data_y)
        print(recommendList)
        print(answerList)
        return [recommendList, answerList]
Exemple #3
0
    def RecommendByKN(train_data, train_data_y, test_data, test_data_y, recommendNum=5):
        """ML  KNeighbors"""
        clf = KNeighborsClassifier()
        clf.fit(train_data, train_data_y)
        predictions = clf.predict_proba(test_data)
        """预测结果转化为data array"""
        predictions = DataProcessUtils.convertMultilabelProbaToDataArray(predictions)
        print(predictions)

        recommendList = DataProcessUtils.getListFromProbable(predictions, range(1, train_data_y.shape[1] + 1),
                                                             recommendNum)
        answerList = test_data_y
        print(predictions)
        print(test_data_y)
        print(recommendList)
        print(answerList)
        return [recommendList, answerList]
Exemple #4
0
    def RecommendByETS(train_data, train_data_y, test_data, test_data_y, recommendNum=5):
        """多标签分类  """

        clf = ExtraTreesClassifier(n_jobs=3, n_estimators=250)
        param_test2 = {'max_depth': range(10, 40, 10), 'min_samples_split': range(15, 30, 5)}
        clf = GridSearchCV(estimator=clf, param_grid=param_test2, iid=False, cv=10, n_jobs=2)

        clf.fit(train_data, train_data_y)
        predictions = clf.predict_proba(test_data)
        """预测结果转化为data array"""
        predictions = DataProcessUtils.convertMultilabelProbaToDataArray(predictions)
        print(predictions)

        recommendList = DataProcessUtils.getListFromProbable(predictions, range(1, train_data_y.shape[1] + 1),
                                                             recommendNum)
        answerList = test_data_y
        print(predictions)
        print(test_data_y)
        print(recommendList)
        print(answerList)
        return [recommendList, answerList]