Exemple #1
0
def mode_meridien(reconfile,
                  classavgstack,
                  classdocs,
                  partangles,
                  selectdoc,
                  maxshift,
                  outerrad,
                  outanglesdoc,
                  outaligndoc,
                  interpolation_method=1,
                  outliers=None,
                  goodclassparttemplate=None,
                  alignopt='apsh',
                  ringstep=1,
                  log=None,
                  verbose=False):

    # Resample reference
    recondata = EMAN2.EMData(reconfile)
    idim = recondata['nx']
    reconprep = prep_vol(recondata,
                         npad=2,
                         interpolation_method=interpolation_method)

    # Initialize output angles
    outangleslist = []
    outalignlist = []

    # Read class lists
    classdoclist = glob.glob(classdocs)
    partangleslist = read_text_row(partangles)

    # Loop through class lists
    for classdoc in classdoclist:  # [classdoclist[32]]:  #
        # Strip out three-digit filenumber
        classexample = os.path.splitext(classdoc)
        classnum = int(classexample[0][-3:])

        # Initial average
        [avg_phi_init, avg_theta_init] = average_angles(partangleslist,
                                                        classdoc,
                                                        selectdoc=selectdoc)

        # Look for outliers
        if outliers:
            [avg_phi_final, avg_theta_final] = average_angles(
                partangleslist,
                classdoc,
                selectdoc=selectdoc,
                init_angles=[avg_phi_init, avg_theta_init],
                threshold=outliers,
                goodpartdoc=goodclassparttemplate.format(classnum),
                log=log,
                verbose=verbose)
        else:
            [avg_phi_final, avg_theta_final] = [avg_phi_init, avg_theta_init]

        # Compute re-projection
        refprjreal = prgl(reconprep, [avg_phi_final, avg_theta_final, 0, 0, 0],
                          interpolation_method=1,
                          return_real=True)

        # Align to class average
        classavg = get_im(classavgstack, classnum)

        # Alignment using self-correlation function
        if alignopt == 'scf':
            ang_align2d, sxs, sys, mirrorflag, peak = align2d_scf(classavg,
                                                                  refprjreal,
                                                                  maxshift,
                                                                  maxshift,
                                                                  ou=outerrad)

        # Weird results
        elif alignopt == 'align2d':
            # Set search range
            currshift = 0
            txrng = tyrng = search_range(idim, outerrad, currshift, maxshift)

            # Perform alignment
            ang_align2d, sxs, sys, mirrorflag, peak = align2d(
                classavg, refprjreal, txrng, tyrng, last_ring=outerrad)

        # Direct3 (angles seemed to be quantized)
        elif alignopt == 'direct3':
            [[ang_align2d, sxs, sys, mirrorflag,
              peak]] = align2d_direct3([classavg],
                                       refprjreal,
                                       maxshift,
                                       maxshift,
                                       ou=outerrad)

        # APSH-like alignment (default)
        else:
            [[ang_align2d, sxs, sys, mirrorflag,
              scale]] = apsh(refprjreal,
                             classavg,
                             outerradius=outerrad,
                             maxshift=maxshift,
                             ringstep=ringstep)

        outalignlist.append([ang_align2d, sxs, sys, mirrorflag, 1])
        msg = "Particle list %s: ang_align2d=%s sx=%s sy=%s mirror=%s\n" % (
            classdoc, ang_align2d, sxs, sys, mirrorflag)
        print_log_msg(msg, log, verbose)

        # Check for mirroring
        if mirrorflag == 1:
            tempeulers = list(
                compose_transform3(avg_phi_final, avg_theta_final, 0, 0, 0, 0,
                                   1, 0, 180, 0, 0, 0, 0, 1))
            combinedparams = list(
                compose_transform3(tempeulers[0], tempeulers[1], tempeulers[2],
                                   tempeulers[3], tempeulers[4], 0, 1, 0, 0,
                                   -ang_align2d, 0, 0, 0, 1))
        else:
            combinedparams = list(
                compose_transform3(avg_phi_final, avg_theta_final, 0, 0, 0, 0,
                                   1, 0, 0, -ang_align2d, 0, 0, 0, 1))
        # compose_transform3: returns phi,theta,psi, tx,ty,tz, scale

        outangleslist.append(combinedparams)
    # End class-loop

    write_text_row(outangleslist, outanglesdoc)
    write_text_row(outalignlist, outaligndoc)
    print_log_msg(
        'Wrote alignment parameters to %s and %s\n' %
        (outanglesdoc, outaligndoc), log, verbose)

    del recondata  # Clean up
Exemple #2
0
def main():
    progname = os.path.basename(sys.argv[0])
    usage = progname + """ [options] <inputfile> <outputfile>

	Forms chains of 2D images based on their similarities.

	Functionality:


	Order a 2-D stack of image based on pair-wise similarity (computed as a cross-correlation coefficent).
		Options 1-3 require image stack to be aligned.  The program will apply orientation parameters if present in headers.
	    The ways to use the program:
	   1.  Use option initial to specify which image will be used as an initial seed to form the chain.
	        sp_chains.py input_stack.hdf output_stack.hdf --initial=23 --radius=25

	   2.  If options initial is omitted, the program will determine which image best serves as initial seed to form the chain
	        sp_chains.py input_stack.hdf output_stack.hdf --radius=25

	   3.  Use option circular to form a circular chain.
	        sp_chains.py input_stack.hdf output_stack.hdf --circular--radius=25

	   4.  New circular code based on pairwise alignments
			sp_chains.py aclf.hdf chain.hdf circle.hdf --align  --radius=25 --xr=2 --pairwiseccc=lcc.txt

	   5.  Circular ordering based on pairwise alignments
			sp_chains.py vols.hdf chain.hdf mask.hdf --dd  --radius=25


"""

    parser = OptionParser(usage, version=SPARXVERSION)
    parser.add_option(
        "--dd",
        action="store_true",
        help="Circular ordering without adjustment of orientations",
        default=False)
    parser.add_option(
        "--circular",
        action="store_true",
        help=
        "Select circular ordering (first image has to be similar to the last)",
        default=False)
    parser.add_option(
        "--align",
        action="store_true",
        help=
        "Compute all pairwise alignments and from the table of image similarities find the best chain",
        default=False)
    parser.add_option(
        "--initial",
        type="int",
        default=-1,
        help=
        "Specifies which image will be used as an initial seed to form the chain. (default = 0, means the first image)"
    )
    parser.add_option(
        "--radius",
        type="int",
        default=-1,
        help="Radius of a circular mask for similarity based ordering")
    #  import params for 2D alignment
    parser.add_option(
        "--ou",
        type="int",
        default=-1,
        help=
        "outer radius for 2D alignment < nx/2-1 (set to the radius of the particle)"
    )
    parser.add_option(
        "--xr",
        type="int",
        default=0,
        help="range for translation search in x direction, search is +/xr (0)")
    parser.add_option(
        "--yr",
        type="int",
        default=0,
        help="range for translation search in y direction, search is +/yr (0)")
    # parser.add_option("--nomirror",     action="store_true", default=False,   help="Disable checking mirror orientations of images (default False)")
    parser.add_option("--pairwiseccc",
                      type="string",
                      default=" ",
                      help="Input/output pairwise ccc file")

    (options, args) = parser.parse_args()

    sp_global_def.BATCH = True

    if options.dd:
        nargs = len(args)
        if nargs != 3:
            ERROR("Must provide name of input and two output files!")
            return

        stack = args[0]
        new_stack = args[1]

        from sp_utilities import model_circle
        from sp_statistics import ccc
        from sp_statistics import mono
        lend = EMUtil.get_image_count(stack)
        lccc = [None] * (old_div(lend * (lend - 1), 2))

        for i in range(lend - 1):
            v1 = get_im(stack, i)
            if (i == 0 and nargs == 2):
                nx = v1.get_xsize()
                ny = v1.get_ysize()
                nz = v1.get_ysize()
                if options.ou < 1:
                    radius = old_div(nx, 2) - 2
                else:
                    radius = options.ou
                mask = model_circle(radius, nx, ny, nz)
            else:
                mask = get_im(args[2])

            for j in range(i + 1, lend):
                lccc[mono(i, j)] = [ccc(v1, get_im(stack, j), mask), 0]

        order = tsp(lccc)
        if (len(order) != lend):
            ERROR("Problem with data length")
            return

        sxprint("Total sum of cccs :", TotalDistance(order, lccc))
        sxprint("ordering :", order)
        for i in range(lend):
            get_im(stack, order[i]).write_image(new_stack, i)

    elif options.align:
        nargs = len(args)
        if nargs != 3:
            ERROR("Must provide name of input and two output files!")
            return

        from sp_utilities import get_params2D, model_circle
        from sp_fundamentals import rot_shift2D
        from sp_statistics import ccc
        from time import time
        from sp_alignment import align2d, align2d_scf

        stack = args[0]
        new_stack = args[1]

        d = EMData.read_images(stack)
        if (len(d) < 6):
            ERROR(
                "Chains requires at least six images in the input stack to be executed"
            )
            return
        """
		# will align anyway
		try:
			ttt = d[0].get_attr('xform.params2d')
			for i in xrange(len(d)):
				alpha, sx, sy, mirror, scale = get_params2D(d[i])
				d[i] = rot_shift2D(d[i], alpha, sx, sy, mirror)
		except:
			pass
		"""

        nx = d[0].get_xsize()
        ny = d[0].get_ysize()
        if options.ou < 1:
            radius = old_div(nx, 2) - 2
        else:
            radius = options.ou
        mask = model_circle(radius, nx, ny)

        if (options.xr < 0):
            xrng = 0
        else:
            xrng = options.xr
        if (options.yr < 0):
            yrng = xrng
        else:
            yrng = options.yr

        initial = max(options.initial, 0)

        from sp_statistics import mono
        lend = len(d)
        lccc = [None] * (old_div(lend * (lend - 1), 2))
        from sp_utilities import read_text_row

        if options.pairwiseccc == " " or not os.path.exists(
                options.pairwiseccc):
            st = time()
            for i in range(lend - 1):
                for j in range(i + 1, lend):
                    #  j>i meaning mono entry (i,j) or (j,i) indicates T i->j (from smaller index to larger)
                    # alpha, sx, sy, mir, peak = align2d(d[i],d[j], xrng, yrng, step=options.ts, first_ring=options.ir, last_ring=radius, mode = "F")
                    alpha, sx, sy, mir, peak = align2d_scf(d[i],
                                                           d[j],
                                                           xrng,
                                                           yrng,
                                                           ou=radius)
                    lccc[mono(i, j)] = [
                        ccc(d[j], rot_shift2D(d[i], alpha, sx, sy, mir, 1.0),
                            mask), alpha, sx, sy, mir
                    ]
            # print "  %4d   %10.1f"%(i,time()-st)

            if ((not os.path.exists(options.pairwiseccc))
                    and (options.pairwiseccc != " ")):
                write_text_row([[initial, 0, 0, 0, 0]] + lccc,
                               options.pairwiseccc)
        elif (os.path.exists(options.pairwiseccc)):
            lccc = read_text_row(options.pairwiseccc)
            initial = int(lccc[0][0] + 0.1)
            del lccc[0]

        for i in range(len(lccc)):
            T = Transform({
                "type": "2D",
                "alpha": lccc[i][1],
                "tx": lccc[i][2],
                "ty": lccc[i][3],
                "mirror": int(lccc[i][4] + 0.1)
            })
            lccc[i] = [lccc[i][0], T]

        tdummy = Transform({"type": "2D"})
        maxsum = -1.023
        for m in range(0, lend):  # initial, initial+1):
            indc = list(range(lend))
            lsnake = [[m, tdummy, 0.0]]
            del indc[m]

            lsum = 0.0
            while len(indc) > 1:
                maxcit = -111.
                for i in range(len(indc)):
                    cuc = lccc[mono(indc[i], lsnake[-1][0])][0]
                    if cuc > maxcit:
                        maxcit = cuc
                        qi = indc[i]
                        #  Here we need transformation from the current to the previous,
                        #     meaning indc[i] -> lsnake[-1][0]
                        T = lccc[mono(indc[i], lsnake[-1][0])][1]
                        #  If direction is from larger to smaller index, the transformation has to be inverted
                        if (indc[i] > lsnake[-1][0]): T = T.inverse()

                lsnake.append([qi, T, maxcit])
                lsum += maxcit

                del indc[indc.index(qi)]

            T = lccc[mono(indc[-1], lsnake[-1][0])][1]
            if (indc[-1] > lsnake[-1][0]): T = T.inverse()
            lsnake.append(
                [indc[-1], T, lccc[mono(indc[-1], lsnake[-1][0])][0]])
            sxprint(" initial image and lsum  ", m, lsum)
            # print lsnake
            if (lsum > maxsum):
                maxsum = lsum
                init = m
                snake = [lsnake[i] for i in range(lend)]
        sxprint("  Initial image selected : ", init, maxsum, "    ",
                TotalDistance([snake[m][0] for m in range(lend)], lccc))
        # for q in snake: print q

        from copy import deepcopy
        trans = deepcopy([snake[i][1] for i in range(len(snake))])
        sxprint([snake[i][0] for i in range(len(snake))])
        """
		for m in xrange(lend):
			prms = trans[m].get_params("2D")
			print " %3d   %7.1f   %7.1f   %7.1f   %2d  %6.2f"%(snake[m][0], prms["alpha"], prms["tx"], prms["ty"], prms["mirror"], snake[m][2])
		"""
        for k in range(lend - 2, 0, -1):
            T = snake[k][1]
            for i in range(k + 1, lend):
                trans[i] = T * trans[i]
        #  To add - apply all transformations and do the overall centering.
        for m in range(lend):
            prms = trans[m].get_params("2D")
            # print(" %3d   %7.1f   %7.1f   %7.1f   %2d  %6.2f"%(snake[m][0], prms["alpha"], prms["tx"], prms["ty"], prms["mirror"], snake[m][2]) )
            # rot_shift2D(d[snake[m][0]], prms["alpha"], prms["tx"], prms["ty"], prms["mirror"]).write_image(new_stack, m)
            rot_shift2D(d[snake[m][0]], prms["alpha"], 0.0, 0.0,
                        prms["mirror"]).write_image(new_stack, m)

        order = tsp(lccc)
        if (len(order) != lend):
            ERROR("Problem with data length")
            return

        sxprint(TotalDistance(order, lccc))
        sxprint(order)
        ibeg = order.index(init)
        order = [order[(i + ibeg) % lend] for i in range(lend)]
        sxprint(TotalDistance(order, lccc))
        sxprint(order)

        snake = [tdummy]
        for i in range(1, lend):
            #  Here we need transformation from the current to the previous,
            #     meaning order[i] -> order[i-1]]
            T = lccc[mono(order[i], order[i - 1])][1]
            #  If direction is from larger to smaller index, the transformation has to be inverted
            if (order[i] > order[i - 1]): T = T.inverse()
            snake.append(T)
        assert (len(snake) == lend)
        from copy import deepcopy
        trans = deepcopy(snake)
        for k in range(lend - 2, 0, -1):
            T = snake[k]
            for i in range(k + 1, lend):
                trans[i] = T * trans[i]

        #  Try to smooth the angles - complicated, I am afraid one would have to use angles forward and backwards
        #     and find their average??
        #  In addition, one would have to recenter them
        """
		trms = []
		for m in xrange(lend):
			prms = trans[m].get_params("2D")
			trms.append([prms["alpha"], prms["mirror"]])
		for i in xrange(3):
			for m in xrange(lend):
				mb = (m-1)%lend
				me = (m+1)%lend
				#  angles order mb,m,me
				# calculate predicted angles mb->m 
		"""

        best_params = []
        for m in range(lend):
            prms = trans[m].get_params("2D")
            # rot_shift2D(d[order[m]], prms["alpha"], prms["tx"], prms["ty"], prms["mirror"]).write_image("metro.hdf", m)
            rot_shift2D(d[order[m]], prms["alpha"], 0.0, 0.0,
                        prms["mirror"]).write_image(args[2], m)
            best_params.append(
                [m, order[m], prms["alpha"], 0.0, 0.0, prms["mirror"]])

        # Write alignment parameters
        outdir = os.path.dirname(args[2])
        aligndoc = os.path.join(outdir, "chains_params.txt")
        write_text_row(best_params, aligndoc)
        """
		#  This was an effort to get number of loops, inconclusive, to say the least
		from numpy import outer, zeros, float32, sqrt
		lend = len(d)
 		cor = zeros(lend,float32)
 		cor = outer(cor, cor)
		for i in xrange(lend):  cor[i][i] = 1.0
		for i in xrange(lend-1):
			for j in xrange(i+1, lend):
				cor[i,j] = lccc[mono(i,j)][0]
				cor[j,i] = cor[i,j]

		lmbd, eigvec = pca(cor)

		from sp_utilities import write_text_file

		nvec=20
		print  [lmbd[j] for j in xrange(nvec)]
		print  " G"
		mm = [-1]*lend
		for i in xrange(lend):  # row
			mi = -1.0e23
			for j in xrange(nvec):
				qt = eigvec[j][i]
				if(abs(qt)>mi):
					mi = abs(qt)
					mm[i] = j
			for j in xrange(nvec):
				qt = eigvec[j][i]
				print  round(qt,3),   #  eigenvector
			print  mm[i]
		print
		for j in xrange(nvec):
			qt = []
			for i in xrange(lend):
				if(mm[i] == j):  qt.append(i)
			if(len(qt)>0):  write_text_file(qt,"loop%02d.txt"%j)
		"""
        """
		print  [lmbd[j] for j in xrange(nvec)]
		print  " B"
		mm = [-1]*lend
		for i in xrange(lend):  # row
			mi = -1.0e23
			for j in xrange(nvec):
				qt = eigvec[j][i]/sqrt(lmbd[j])
				if(abs(qt)>mi):
					mi = abs(qt)
					mm[i] = j
			for j in xrange(nvec):
				qt = eigvec[j][i]/sqrt(lmbd[j])
				print  round(qt,3),   #  eigenvector
			print  mm[i]
		print
		"""
        """
		lend=3
 		cor = zeros(lend,float32)

 		cor = outer(cor, cor)


 		cor[0][0] =136.77
 		cor[0][1] = 79.15
 		cor[0][2] = 37.13

 		cor[1][0] = 79.15
 		cor[2][0] = 37.13


 		cor[1][1] = 50.04
 		cor[1][2] = 21.65

 		cor[2][1] = 21.65


 		cor[2][2] = 13.26

		lmbd, eigvec = pca(cor)
		print  lmbd
		print  eigvec
		for i in xrange(lend):  # row
			for j in xrange(lend):  print  eigvec[j][i],   #  eigenvector
			print
		print  " B"
		for i in xrange(lend):  # row
			for j in xrange(lend):  print  eigvec[j][i]/sqrt(lmbd[j]),   #  eigenvector
			print
		print  " G"
		for i in xrange(lend):  # row
			for j in xrange(lend):  print  eigvec[j][i]*sqrt(lmbd[j]),   #  eigenvector
			print
		"""
    else:
        nargs = len(args)
        if nargs != 2:
            ERROR("Must provide name of input and output file!")
            return

        from sp_utilities import get_params2D, model_circle
        from sp_fundamentals import rot_shift2D
        from sp_statistics import ccc
        from time import time
        from sp_alignment import align2d

        stack = args[0]
        new_stack = args[1]

        d = EMData.read_images(stack)
        try:
            sxprint("Using 2D alignment parameters from header.")
            ttt = d[0].get_attr('xform.params2d')
            for i in range(len(d)):
                alpha, sx, sy, mirror, scale = get_params2D(d[i])
                d[i] = rot_shift2D(d[i], alpha, sx, sy, mirror)
        except:
            pass

        nx = d[0].get_xsize()
        ny = d[0].get_ysize()
        if options.radius < 1:
            radius = old_div(nx, 2) - 2
        else:
            radius = options.radius
        mask = model_circle(radius, nx, ny)

        init = options.initial

        if init > -1:
            sxprint("      initial image: %d" % init)
            temp = d[init].copy()
            temp.write_image(new_stack, 0)
            del d[init]
            k = 1
            lsum = 0.0
            while len(d) > 1:
                maxcit = -111.
                for i in range(len(d)):
                    cuc = ccc(d[i], temp, mask)
                    if cuc > maxcit:
                        maxcit = cuc
                        qi = i
                # 	sxprint k, maxcit
                lsum += maxcit
                temp = d[qi].copy()
                del d[qi]
                temp.write_image(new_stack, k)
                k += 1
            sxprint(lsum)
            d[0].write_image(new_stack, k)
        else:
            if options.circular:
                sxprint("Using options.circular, no alignment")
                #  figure the "best circular" starting image
                maxsum = -1.023
                for m in range(len(d)):
                    indc = list(range(len(d)))
                    lsnake = [-1] * (len(d) + 1)
                    lsnake[0] = m
                    lsnake[-1] = m
                    del indc[m]
                    temp = d[m].copy()
                    lsum = 0.0
                    direction = +1
                    k = 1
                    while len(indc) > 1:
                        maxcit = -111.
                        for i in range(len(indc)):
                            cuc = ccc(d[indc[i]], temp, mask)
                            if cuc > maxcit:
                                maxcit = cuc
                                qi = indc[i]
                        lsnake[k] = qi
                        lsum += maxcit
                        del indc[indc.index(qi)]
                        direction = -direction
                        for i in range(1, len(d)):
                            if (direction > 0):
                                if (lsnake[i] == -1):
                                    temp = d[lsnake[i - 1]].copy()
                                    # print  "  forw  ",lsnake[i-1]
                                    k = i
                                    break
                            else:
                                if (lsnake[len(d) - i] == -1):
                                    temp = d[lsnake[len(d) - i + 1]].copy()
                                    # print  "  back  ",lsnake[len(d) - i +1]
                                    k = len(d) - i
                                    break

                    lsnake[lsnake.index(-1)] = indc[-1]
                    # print  " initial image and lsum  ",m,lsum
                    # print lsnake
                    if (lsum > maxsum):
                        maxsum = lsum
                        init = m
                        snake = [lsnake[i] for i in range(len(d))]
                sxprint("  Initial image selected : ", init, maxsum)
                sxprint(lsnake)
                for m in range(len(d)):
                    d[snake[m]].write_image(new_stack, m)
            else:
                #  figure the "best" starting image
                sxprint("Straight chain, no alignment")
                maxsum = -1.023
                for m in range(len(d)):
                    indc = list(range(len(d)))
                    lsnake = [m]
                    del indc[m]
                    temp = d[m].copy()
                    lsum = 0.0
                    while len(indc) > 1:
                        maxcit = -111.
                        for i in range(len(indc)):
                            cuc = ccc(d[indc[i]], temp, mask)
                            if cuc > maxcit:
                                maxcit = cuc
                                qi = indc[i]
                        lsnake.append(qi)
                        lsum += maxcit
                        temp = d[qi].copy()
                        del indc[indc.index(qi)]

                    lsnake.append(indc[-1])
                    # sxprint  " initial image and lsum  ",m,lsum
                    # sxprint lsnake
                    if (lsum > maxsum):
                        maxsum = lsum
                        init = m
                        snake = [lsnake[i] for i in range(len(d))]
                sxprint("  Initial image selected : ", init, maxsum)
                sxprint(lsnake)
                for m in range(len(d)):
                    d[snake[m]].write_image(new_stack, m)