Exemple #1
0
def prg(volume, params):
    """Given a volume, a set of projection angles, and Kaiser-Bessel
	   window parameters, use gridding to generate projection
	"""
    Mx = volume.get_xsize()
    My = volume.get_ysize()
    Mz = volume.get_zsize()
    if (Mx == Mz & My == Mz):
        volft, kb = prep_vol(volume)
        return prgs(volft, kb, params)
    else:
        volft, kbx, kby, kbz = prep_vol(volume)
        return prgs(volft, kbz, params, kbx, kby)
Exemple #2
0
def prj(vol, params, stack=None):
    """
		Name
			prj - calculate a set of 2-D projection of a 3-D volume using gridding
		Input
			vol: input volume, all dimensions have to be the same (nx=ny=nz)
			params: a list of input parameters given as a list [i][phi, theta, psi, sx, sy], projection in calculated using the three Eulerian angles and then shifted by sx,sy
		Output
			proj
				either: an in-core stack of generated 2-D projections
			stack
	"""
    from sp_utilities import set_params_proj
    from sp_projection import prep_vol
    volft, kb = prep_vol(vol)
    for i in range(len(params)):
        proj = prgs(volft, kb, params[i])
        set_params_proj(proj, [
            params[i][0], params[i][1], params[i][2], -params[i][3],
            -params[i][4]
        ])
        proj.set_attr_dict({'ctf_applied': 0})

        if (stack):
            proj.write_image(stack, i)
        else:
            if (i == 0): out = []
            out.append(proj)
    if (stack): return
    else: return out
Exemple #3
0
def read_volume(path_vol_1,
                path_vol_2,
                path_mask=None,
                resolution=None,
                pixel_size=None):
    """
	Reads the 3D density map
	:param path_vol_1: Path to the density map
	:param path_mask: If provided, the volume is masked.
	:return: Volume for density map
	"""
    print("Read volumes, masking them and prepare them for reprojections")
    mask_vol = None
    vol2 = None
    if path_mask is not None:
        mask_vol = sp_utilities.get_im(path_mask)

    vol1 = prepare_volume(path_vol_1, mask_vol, resolution, pixel_size)
    if path_vol_2:
        vol2 = prepare_volume(path_vol_2, mask_vol, resolution, pixel_size)

    if mask_vol:
        mask_vol = sp_projection.prep_vol(mask_vol, interpolation_method=1)

    return vol1, vol2, mask_vol
Exemple #4
0
def prepare_volume(volume_path, mask=None, resolution=None, pixel_size=None):
    """
	Prepares the volume for reprojections
	:param volume_path: Path to volume file
	:param mask: Particle mask
	:param resolution: Resolution of the current reconstruction.
	:return:
	"""
    vol = sp_utilities.get_im(volume_path)
    if resolution:
        vol = vol.process(
            "filter.lowpass.gauss",
            {
                "cutoff_freq": old_div(1.0, resolution),
                "apix": pixel_size
            },
        )
    if mask:
        vol = vol * mask
    vol = sp_projection.prep_vol(vol, interpolation_method=1)
    return vol
Exemple #5
0
def generate_helimic(refvol,
                     outdir,
                     pixel,
                     CTF=False,
                     Cs=2.0,
                     voltage=200.0,
                     ampcont=10.0,
                     nonoise=False,
                     rand_seed=14567):

    from sp_utilities import model_blank, model_gauss, model_gauss_noise, pad, get_im
    from random import random
    from sp_projection import prgs, prep_vol
    from sp_filter import filt_gaussl, filt_ctf
    from EMAN2 import EMAN2Ctf

    if os.path.exists(outdir):
        ERROR(
            "Output directory exists, please change the name and restart the program"
        )
        return

    os.mkdir(outdir)
    seed(rand_seed)
    Util.set_randnum_seed(rand_seed)
    angles = []
    for i in range(3):
        angles.append([0.0 + 60.0 * i, 90.0 - i * 5, 0.0, 0.0, 0.0])

    nangle = len(angles)

    volfts = get_im(refvol)
    nx = volfts.get_xsize()
    ny = volfts.get_ysize()
    nz = volfts.get_zsize()
    volfts, kbx, kby, kbz = prep_vol(volfts)
    iprj = 0
    width = 500
    xstart = 0
    ystart = 0

    for idef in range(3, 6):
        mic = model_blank(2048, 2048)
        #defocus = idef*0.2
        defocus = idef * 0.6  ##@ming
        if CTF:
            #ctf = EMAN2Ctf()
            #ctf.from_dict( {"defocus":defocus, "cs":Cs, "voltage":voltage, "apix":pixel, "ampcont":ampcont, "bfactor":0.0} )
            from sp_utilities import generate_ctf
            ctf = generate_ctf(
                [defocus, 2, 200, 1.84, 0.0, ampcont, defocus * 0.2, 80]
            )  ##@ming   the range of astigmatism amplitude is between 10 percent and 22 percent. 20 percent is a good choice.
        i = idef - 4
        for k in range(1):
            psi = 90 + 10 * i
            proj = prgs(
                volfts, kbz,
                [angles[idef - 3][0], angles[idef - 3][1], psi, 0.0, 0.0], kbx,
                kby)
            proj = Util.window(proj, 320, nz)
            mic += pad(proj, 2048, 2048, 1, 0.0, 750 * i, 20 * i, 0)

        if not nonoise: mic += model_gauss_noise(30.0, 2048, 2048)
        if CTF:
            #apply CTF
            mic = filt_ctf(mic, ctf)

        if not nonoise:
            mic += filt_gaussl(model_gauss_noise(17.5, 2048, 2048), 0.3)

        mic.write_image("%s/mic%1d.hdf" % (outdir, idef - 3), 0)
Exemple #6
0
def mode_meridien(reconfile,
                  classavgstack,
                  classdocs,
                  partangles,
                  selectdoc,
                  maxshift,
                  outerrad,
                  outanglesdoc,
                  outaligndoc,
                  interpolation_method=1,
                  outliers=None,
                  goodclassparttemplate=None,
                  alignopt='apsh',
                  ringstep=1,
                  log=None,
                  verbose=False):

    # Resample reference
    recondata = EMAN2.EMData(reconfile)
    idim = recondata['nx']
    reconprep = prep_vol(recondata,
                         npad=2,
                         interpolation_method=interpolation_method)

    # Initialize output angles
    outangleslist = []
    outalignlist = []

    # Read class lists
    classdoclist = glob.glob(classdocs)
    partangleslist = read_text_row(partangles)

    # Loop through class lists
    for classdoc in classdoclist:  # [classdoclist[32]]:  #
        # Strip out three-digit filenumber
        classexample = os.path.splitext(classdoc)
        classnum = int(classexample[0][-3:])

        # Initial average
        [avg_phi_init, avg_theta_init] = average_angles(partangleslist,
                                                        classdoc,
                                                        selectdoc=selectdoc)

        # Look for outliers
        if outliers:
            [avg_phi_final, avg_theta_final] = average_angles(
                partangleslist,
                classdoc,
                selectdoc=selectdoc,
                init_angles=[avg_phi_init, avg_theta_init],
                threshold=outliers,
                goodpartdoc=goodclassparttemplate.format(classnum),
                log=log,
                verbose=verbose)
        else:
            [avg_phi_final, avg_theta_final] = [avg_phi_init, avg_theta_init]

        # Compute re-projection
        refprjreal = prgl(reconprep, [avg_phi_final, avg_theta_final, 0, 0, 0],
                          interpolation_method=1,
                          return_real=True)

        # Align to class average
        classavg = get_im(classavgstack, classnum)

        # Alignment using self-correlation function
        if alignopt == 'scf':
            ang_align2d, sxs, sys, mirrorflag, peak = align2d_scf(classavg,
                                                                  refprjreal,
                                                                  maxshift,
                                                                  maxshift,
                                                                  ou=outerrad)

        # Weird results
        elif alignopt == 'align2d':
            # Set search range
            currshift = 0
            txrng = tyrng = search_range(idim, outerrad, currshift, maxshift)

            # Perform alignment
            ang_align2d, sxs, sys, mirrorflag, peak = align2d(
                classavg, refprjreal, txrng, tyrng, last_ring=outerrad)

        # Direct3 (angles seemed to be quantized)
        elif alignopt == 'direct3':
            [[ang_align2d, sxs, sys, mirrorflag,
              peak]] = align2d_direct3([classavg],
                                       refprjreal,
                                       maxshift,
                                       maxshift,
                                       ou=outerrad)

        # APSH-like alignment (default)
        else:
            [[ang_align2d, sxs, sys, mirrorflag,
              scale]] = apsh(refprjreal,
                             classavg,
                             outerradius=outerrad,
                             maxshift=maxshift,
                             ringstep=ringstep)

        outalignlist.append([ang_align2d, sxs, sys, mirrorflag, 1])
        msg = "Particle list %s: ang_align2d=%s sx=%s sy=%s mirror=%s\n" % (
            classdoc, ang_align2d, sxs, sys, mirrorflag)
        print_log_msg(msg, log, verbose)

        # Check for mirroring
        if mirrorflag == 1:
            tempeulers = list(
                compose_transform3(avg_phi_final, avg_theta_final, 0, 0, 0, 0,
                                   1, 0, 180, 0, 0, 0, 0, 1))
            combinedparams = list(
                compose_transform3(tempeulers[0], tempeulers[1], tempeulers[2],
                                   tempeulers[3], tempeulers[4], 0, 1, 0, 0,
                                   -ang_align2d, 0, 0, 0, 1))
        else:
            combinedparams = list(
                compose_transform3(avg_phi_final, avg_theta_final, 0, 0, 0, 0,
                                   1, 0, 0, -ang_align2d, 0, 0, 0, 1))
        # compose_transform3: returns phi,theta,psi, tx,ty,tz, scale

        outangleslist.append(combinedparams)
    # End class-loop

    write_text_row(outangleslist, outanglesdoc)
    write_text_row(outalignlist, outaligndoc)
    print_log_msg(
        'Wrote alignment parameters to %s and %s\n' %
        (outanglesdoc, outaligndoc), log, verbose)

    del recondata  # Clean up
Exemple #7
0
def compare_projs(reconfile,
                  classavgstack,
                  inputanglesdoc,
                  outdir,
                  interpolation_method=1,
                  log=None,
                  verbose=False):
    """
	Make comparison stack between class averages (even-numbered (starts from 0)) and re-projections (odd-numbered).
	
	Arguments:
		reconfile : Input volume from which to generate re-projections
		classavgstack ; Input image stack
		inputanglesdoc : Input Euler angles doc
		outdir ; Output directory
		interpolation_method : Interpolation method: nearest neighbor (nn, 0), trilinear (1, default), gridding (-1)
		log : Logger object
		verbose : (boolean) Whether to write additional information to screen
	Returns:
		compstack : Stack of comparisons between input image stack (even-numbered (starts from 0)) and input volume (odd-numbered)
	"""

    recondata = EMAN2.EMData(reconfile)
    nx = recondata.get_xsize()

    # Resample reference
    reconprep = prep_vol(recondata,
                         npad=2,
                         interpolation_method=interpolation_method)

    ccclist = []

    #  Here you need actual radius to compute proper ccc's, but if you do, you have to deal with translations, PAP
    mask = model_circle(nx // 2 - 2, nx, nx)
    mask.write_image(os.path.join(outdir, 'maskalign.hdf'))
    compstack = os.path.join(outdir, 'comp-proj-reproj.hdf')

    # Number of images may have changed
    nimg1 = EMAN2.EMUtil.get_image_count(classavgstack)
    angleslist = read_text_row(inputanglesdoc)

    for imgnum in range(nimg1):
        # Get class average
        classimg = get_im(classavgstack, imgnum)

        # Compute re-projection
        prjimg = prgl(reconprep,
                      angleslist[imgnum],
                      interpolation_method=1,
                      return_real=False)

        # Calculate 1D power spectra
        rops_dst = rops_table(classimg * mask)
        rops_src = rops_table(prjimg)

        #  Set power spectrum of reprojection to the data.
        #  Since data has an envelope, it would make more sense to set data to reconstruction,
        #  but to do it one would have to know the actual resolution of the data.
        #  you can check sxprocess.py --adjpw to see how this is done properly  PAP
        table = [0.0] * len(rops_dst)  # initialize table
        for j in range(len(rops_dst)):
            table[j] = sqrt(rops_dst[j] / rops_src[j])
        prjimg = fft(filt_table(
            prjimg,
            table))  # match FFT amplitudes of re-projection and class average

        cccoeff = ccc(prjimg, classimg, mask)
        #print imgnum, cccoeff
        classimg.set_attr_dict({'cross-corr': cccoeff})
        prjimg.set_attr_dict({'cross-corr': cccoeff})

        montagestack = []
        montagestack.append(prjimg)
        montagestack.append(classimg)
        comparison_pair = montage2(montagestack, ncol=2, marginwidth=1)
        comparison_pair.write_image(compstack, imgnum)

        ccclist.append(cccoeff)
    del angleslist
    meanccc = sum(ccclist) / nimg1
    print_log_msg("Average CCC is %s\n" % meanccc, log, verbose)

    nimg2 = EMAN2.EMUtil.get_image_count(compstack)

    for imgnum in range(nimg2):  # xrange will be deprecated in Python3
        prjimg = get_im(compstack, imgnum)
        meanccc1 = prjimg.get_attr_default('mean-cross-corr', -1.0)
        prjimg.set_attr_dict({'mean-cross-corr': meanccc})
        write_header(compstack, prjimg, imgnum)

    return compstack