def prepref(data, maskfile, cnx, cny, numr, mode, maxrangex, maxrangey, step): # step = 1 mashi = cnx - numr[-3] - 2 nima = len(data) istep = int(old_div(1.0, step)) dimage = [[[None for j in range(2 * maxrangey * istep + 1)] for i in range(2 * maxrangex * istep + 1)] for im in range(nima)] for im in range(nima): sts = EMAN2_cppwrap.Util.infomask(data[im], maskfile, False) data[im] -= sts[0] data[im] = old_div(data[im], sts[1]) alpha, sx, sy, mirror, dummy = sp_utilities.get_params2D(data[im]) # alpha, sx, sy, dummy = combine_params2(alpha, sx, sy, mirror, 0.0, -cs[0], -cs[1], 0) alphai, sxi, syi, dummy = sp_utilities.combine_params2( 0.0, sx, sy, 0, -alpha, 0, 0, 0) # introduce constraints on parameters to accomodate use of cs centering sxi = min(max(sxi, -mashi), mashi) syi = min(max(syi, -mashi), mashi) for j in range(-maxrangey * istep, maxrangey * istep + 1): iy = j * step for i in range(-maxrangex * istep, maxrangex * istep + 1): ix = i * step dimage[im][i + maxrangex][j + maxrangey] = EMAN2_cppwrap.Util.Polar2Dm( data[im], cnx + sxi + ix, cny + syi + iy, numr, mode) # print ' prepref ',j,i,j+maxrangey,i+maxrangex EMAN2_cppwrap.Util.Frngs( dimage[im][i + maxrangex][j + maxrangey], numr) dimage[im][0][0].set_attr("sxi", sxi) dimage[im][0][0].set_attr("syi", syi) return dimage
def align_diff_params(ali_params1, ali_params2): ''' This function determines the relative angle, shifts and mirrorness between two sets of alignment parameters. ''' pass #IMPORTIMPORTIMPORT from math import cos, sin, pi pass #IMPORTIMPORTIMPORT from sp_utilities import combine_params2 nima = len(ali_params1) nima2 = len(ali_params2) if nima2 != nima: sp_global_def.sxprint("Error: Number of images do not agree!") return 0.0, 0.0, 0.0, 0 else: nima /= 4 del nima2 # Read the alignment parameters and determine the relative mirrorness mirror_same = 0 for i in range(nima): if ali_params1[i * 4 + 3] == ali_params2[i * 4 + 3]: mirror_same += 1 if mirror_same > nima / 2: mirror = 0 else: mirror_same = nima - mirror_same mirror = 1 # Determine the relative angle cosi = 0.0 sini = 0.0 angle1 = [] angle2 = [] for i in range(nima): mirror1 = ali_params1[i * 4 + 3] mirror2 = ali_params2[i * 4 + 3] if abs(mirror1 - mirror2) == mirror: alpha1 = ali_params1[i * 4] alpha2 = ali_params2[i * 4] if mirror1 == 1: alpha1 = -alpha1 alpha2 = -alpha2 angle1.append(alpha1) angle2.append(alpha2) alphai = angle_diff(angle1, angle2) # Determine the relative shift sxi = 0.0 syi = 0.0 for i in range(nima): mirror1 = ali_params1[i * 4 + 3] mirror2 = ali_params2[i * 4 + 3] if abs(mirror1 - mirror2) == mirror: alpha1 = ali_params1[i * 4] #alpha2 = ali_params2[i*4] sx1 = ali_params1[i * 4 + 1] sx2 = ali_params2[i * 4 + 1] sy1 = ali_params1[i * 4 + 2] sy2 = ali_params2[i * 4 + 2] alpha12, sx12, sy12, mirror12 = sp_utilities.combine_params2( alpha1, sx1, sy1, int(mirror1), alphai, 0.0, 0.0, 0) if mirror1 == 0: sxi += sx2 - sx12 else: sxi -= sx2 - sx12 syi += sy2 - sy12 sxi /= mirror_same syi /= mirror_same return alphai, sxi, syi, mirror
def main(): global Tracker, Blockdata progname = os.path.basename(sys.argv[0]) usage = progname + " --output_dir=output_dir --isac_dir=output_dir_of_isac " parser = optparse.OptionParser(usage, version=sp_global_def.SPARXVERSION) parser.add_option( "--pw_adjustment", type="string", default="analytical_model", help= "adjust power spectrum of 2-D averages to an analytic model. Other opions: no_adjustment; bfactor; a text file of 1D rotationally averaged PW", ) #### Four options for --pw_adjustment: # 1> analytical_model(default); # 2> no_adjustment; # 3> bfactor; # 4> adjust_to_given_pw2(user has to provide a text file that contains 1D rotationally averaged PW) # options in common parser.add_option( "--isac_dir", type="string", default="", help="ISAC run output directory, input directory for this command", ) parser.add_option( "--output_dir", type="string", default="", help="output directory where computed averages are saved", ) parser.add_option( "--pixel_size", type="float", default=-1.0, help= "pixel_size of raw images. one can put 1.0 in case of negative stain data", ) parser.add_option( "--fl", type="float", default=-1.0, help= "low pass filter, = -1.0, not applied; =0.0, using FH1 (initial resolution), = 1.0 using FH2 (resolution after local alignment), or user provided value in absolute freqency [0.0:0.5]", ) parser.add_option("--stack", type="string", default="", help="data stack used in ISAC") parser.add_option("--radius", type="int", default=-1, help="radius") parser.add_option("--xr", type="float", default=-1.0, help="local alignment search range") # parser.add_option("--ts", type ="float", default =1.0, help= "local alignment search step") parser.add_option( "--fh", type="float", default=-1.0, help="local alignment high frequencies limit", ) # parser.add_option("--maxit", type ="int", default =5, help= "local alignment iterations") parser.add_option("--navg", type="int", default=1000000, help="number of aveages") parser.add_option( "--local_alignment", action="store_true", default=False, help="do local alignment", ) parser.add_option( "--noctf", action="store_true", default=False, help= "no ctf correction, useful for negative stained data. always ctf for cryo data", ) parser.add_option( "--B_start", type="float", default=45.0, help= "start frequency (Angstrom) of power spectrum for B_factor estimation", ) parser.add_option( "--Bfactor", type="float", default=-1.0, help= "User defined bactors (e.g. 25.0[A^2]). By default, the program automatically estimates B-factor. ", ) (options, args) = parser.parse_args(sys.argv[1:]) adjust_to_analytic_model = (True if options.pw_adjustment == "analytical_model" else False) no_adjustment = True if options.pw_adjustment == "no_adjustment" else False B_enhance = True if options.pw_adjustment == "bfactor" else False adjust_to_given_pw2 = ( True if not (adjust_to_analytic_model or no_adjustment or B_enhance) else False) # mpi nproc = mpi.mpi_comm_size(mpi.MPI_COMM_WORLD) myid = mpi.mpi_comm_rank(mpi.MPI_COMM_WORLD) Blockdata = {} Blockdata["nproc"] = nproc Blockdata["myid"] = myid Blockdata["main_node"] = 0 Blockdata["shared_comm"] = mpi.mpi_comm_split_type( mpi.MPI_COMM_WORLD, mpi.MPI_COMM_TYPE_SHARED, 0, mpi.MPI_INFO_NULL) Blockdata["myid_on_node"] = mpi.mpi_comm_rank(Blockdata["shared_comm"]) Blockdata["no_of_processes_per_group"] = mpi.mpi_comm_size( Blockdata["shared_comm"]) masters_from_groups_vs_everything_else_comm = mpi.mpi_comm_split( mpi.MPI_COMM_WORLD, Blockdata["main_node"] == Blockdata["myid_on_node"], Blockdata["myid_on_node"], ) Blockdata["color"], Blockdata[ "no_of_groups"], balanced_processor_load_on_nodes = sp_utilities.get_colors_and_subsets( Blockdata["main_node"], mpi.MPI_COMM_WORLD, Blockdata["myid"], Blockdata["shared_comm"], Blockdata["myid_on_node"], masters_from_groups_vs_everything_else_comm, ) # We need two nodes for processing of volumes Blockdata["node_volume"] = [ Blockdata["no_of_groups"] - 3, Blockdata["no_of_groups"] - 2, Blockdata["no_of_groups"] - 1, ] # For 3D stuff take three last nodes # We need two CPUs for processing of volumes, they are taken to be main CPUs on each volume # We have to send the two myids to all nodes so we can identify main nodes on two selected groups. Blockdata["nodes"] = [ Blockdata["node_volume"][0] * Blockdata["no_of_processes_per_group"], Blockdata["node_volume"][1] * Blockdata["no_of_processes_per_group"], Blockdata["node_volume"][2] * Blockdata["no_of_processes_per_group"], ] # End of Blockdata: sorting requires at least three nodes, and the used number of nodes be integer times of three sp_global_def.BATCH = True sp_global_def.MPI = True if adjust_to_given_pw2: checking_flag = 0 if Blockdata["myid"] == Blockdata["main_node"]: if not os.path.exists(options.pw_adjustment): checking_flag = 1 checking_flag = sp_utilities.bcast_number_to_all( checking_flag, Blockdata["main_node"], mpi.MPI_COMM_WORLD) if checking_flag == 1: sp_global_def.ERROR("User provided power spectrum does not exist", myid=Blockdata["myid"]) Tracker = {} Constants = {} Constants["isac_dir"] = options.isac_dir Constants["masterdir"] = options.output_dir Constants["pixel_size"] = options.pixel_size Constants["orgstack"] = options.stack Constants["radius"] = options.radius Constants["xrange"] = options.xr Constants["FH"] = options.fh Constants["low_pass_filter"] = options.fl # Constants["maxit"] = options.maxit Constants["navg"] = options.navg Constants["B_start"] = options.B_start Constants["Bfactor"] = options.Bfactor if adjust_to_given_pw2: Constants["modelpw"] = options.pw_adjustment Tracker["constants"] = Constants # ------------------------------------------------------------- # # Create and initialize Tracker dictionary with input options # State Variables # <<<---------------------->>>imported functions<<<--------------------------------------------- # x_range = max(Tracker["constants"]["xrange"], int(1./Tracker["ini_shrink"])+1) # y_range = x_range ####----------------------------------------------------------- # Create Master directory and associated subdirectories line = time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime()) + " =>" if Tracker["constants"]["masterdir"] == Tracker["constants"]["isac_dir"]: masterdir = os.path.join(Tracker["constants"]["isac_dir"], "sharpen") else: masterdir = Tracker["constants"]["masterdir"] if Blockdata["myid"] == Blockdata["main_node"]: msg = "Postprocessing ISAC 2D averages starts" sp_global_def.sxprint(line, "Postprocessing ISAC 2D averages starts") if not masterdir: timestring = time.strftime("_%d_%b_%Y_%H_%M_%S", time.localtime()) masterdir = "sharpen_" + Tracker["constants"]["isac_dir"] os.makedirs(masterdir) else: if os.path.exists(masterdir): sp_global_def.sxprint("%s already exists" % masterdir) else: os.makedirs(masterdir) sp_global_def.write_command(masterdir) subdir_path = os.path.join(masterdir, "ali2d_local_params_avg") if not os.path.exists(subdir_path): os.mkdir(subdir_path) subdir_path = os.path.join(masterdir, "params_avg") if not os.path.exists(subdir_path): os.mkdir(subdir_path) li = len(masterdir) else: li = 0 li = mpi.mpi_bcast(li, 1, mpi.MPI_INT, Blockdata["main_node"], mpi.MPI_COMM_WORLD)[0] masterdir = mpi.mpi_bcast(masterdir, li, mpi.MPI_CHAR, Blockdata["main_node"], mpi.MPI_COMM_WORLD) masterdir = b"".join(masterdir).decode('latin1') Tracker["constants"]["masterdir"] = masterdir log_main = sp_logger.Logger(sp_logger.BaseLogger_Files()) log_main.prefix = Tracker["constants"]["masterdir"] + "/" while not os.path.exists(Tracker["constants"]["masterdir"]): sp_global_def.sxprint( "Node ", Blockdata["myid"], " waiting...", Tracker["constants"]["masterdir"], ) time.sleep(1) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if Blockdata["myid"] == Blockdata["main_node"]: init_dict = {} sp_global_def.sxprint(Tracker["constants"]["isac_dir"]) Tracker["directory"] = os.path.join(Tracker["constants"]["isac_dir"], "2dalignment") core = sp_utilities.read_text_row( os.path.join(Tracker["directory"], "initial2Dparams.txt")) for im in range(len(core)): init_dict[im] = core[im] del core else: init_dict = 0 init_dict = sp_utilities.wrap_mpi_bcast(init_dict, Blockdata["main_node"], communicator=mpi.MPI_COMM_WORLD) ### do_ctf = True if options.noctf: do_ctf = False if Blockdata["myid"] == Blockdata["main_node"]: if do_ctf: sp_global_def.sxprint("CTF correction is on") else: sp_global_def.sxprint("CTF correction is off") if options.local_alignment: sp_global_def.sxprint("local refinement is on") else: sp_global_def.sxprint("local refinement is off") if B_enhance: sp_global_def.sxprint("Bfactor is to be applied on averages") elif adjust_to_given_pw2: sp_global_def.sxprint( "PW of averages is adjusted to a given 1D PW curve") elif adjust_to_analytic_model: sp_global_def.sxprint( "PW of averages is adjusted to analytical model") else: sp_global_def.sxprint("PW of averages is not adjusted") # Tracker["constants"]["orgstack"] = "bdb:"+ os.path.join(Tracker["constants"]["isac_dir"],"../","sparx_stack") image = sp_utilities.get_im(Tracker["constants"]["orgstack"], 0) Tracker["constants"]["nnxo"] = image.get_xsize() if Tracker["constants"]["pixel_size"] == -1.0: sp_global_def.sxprint( "Pixel size value is not provided by user. extracting it from ctf header entry of the original stack." ) try: ctf_params = image.get_attr("ctf") Tracker["constants"]["pixel_size"] = ctf_params.apix except: sp_global_def.ERROR( "Pixel size could not be extracted from the original stack.", myid=Blockdata["myid"], ) ## Now fill in low-pass filter isac_shrink_path = os.path.join(Tracker["constants"]["isac_dir"], "README_shrink_ratio.txt") if not os.path.exists(isac_shrink_path): sp_global_def.ERROR( "%s does not exist in the specified ISAC run output directory" % (isac_shrink_path), myid=Blockdata["myid"], ) isac_shrink_file = open(isac_shrink_path, "r") isac_shrink_lines = isac_shrink_file.readlines() isac_shrink_ratio = float( isac_shrink_lines[5] ) # 6th line: shrink ratio (= [target particle radius]/[particle radius]) used in the ISAC run isac_radius = float( isac_shrink_lines[6] ) # 7th line: particle radius at original pixel size used in the ISAC run isac_shrink_file.close() print("Extracted parameter values") print("ISAC shrink ratio : {0}".format(isac_shrink_ratio)) print("ISAC particle radius : {0}".format(isac_radius)) Tracker["ini_shrink"] = isac_shrink_ratio else: Tracker["ini_shrink"] = 0.0 Tracker = sp_utilities.wrap_mpi_bcast(Tracker, Blockdata["main_node"], communicator=mpi.MPI_COMM_WORLD) # print(Tracker["constants"]["pixel_size"], "pixel_size") x_range = max( Tracker["constants"]["xrange"], int(old_div(1.0, Tracker["ini_shrink"]) + 0.99999), ) a_range = y_range = x_range if Blockdata["myid"] == Blockdata["main_node"]: parameters = sp_utilities.read_text_row( os.path.join(Tracker["constants"]["isac_dir"], "all_parameters.txt")) else: parameters = 0 parameters = sp_utilities.wrap_mpi_bcast(parameters, Blockdata["main_node"], communicator=mpi.MPI_COMM_WORLD) params_dict = {} list_dict = {} # parepare params_dict # navg = min(Tracker["constants"]["navg"]*Blockdata["nproc"], EMUtil.get_image_count(os.path.join(Tracker["constants"]["isac_dir"], "class_averages.hdf"))) navg = min( Tracker["constants"]["navg"], EMAN2_cppwrap.EMUtil.get_image_count( os.path.join(Tracker["constants"]["isac_dir"], "class_averages.hdf")), ) global_dict = {} ptl_list = [] memlist = [] if Blockdata["myid"] == Blockdata["main_node"]: sp_global_def.sxprint("Number of averages computed in this run is %d" % navg) for iavg in range(navg): params_of_this_average = [] image = sp_utilities.get_im( os.path.join(Tracker["constants"]["isac_dir"], "class_averages.hdf"), iavg, ) members = sorted(image.get_attr("members")) memlist.append(members) for im in range(len(members)): abs_id = members[im] global_dict[abs_id] = [iavg, im] P = sp_utilities.combine_params2( init_dict[abs_id][0], init_dict[abs_id][1], init_dict[abs_id][2], init_dict[abs_id][3], parameters[abs_id][0], old_div(parameters[abs_id][1], Tracker["ini_shrink"]), old_div(parameters[abs_id][2], Tracker["ini_shrink"]), parameters[abs_id][3], ) if parameters[abs_id][3] == -1: sp_global_def.sxprint( "WARNING: Image #{0} is an unaccounted particle with invalid 2D alignment parameters and should not be the member of any classes. Please check the consitency of input dataset." .format(abs_id) ) # How to check what is wrong about mirror = -1 (Toshio 2018/01/11) params_of_this_average.append([P[0], P[1], P[2], P[3], 1.0]) ptl_list.append(abs_id) params_dict[iavg] = params_of_this_average list_dict[iavg] = members sp_utilities.write_text_row( params_of_this_average, os.path.join( Tracker["constants"]["masterdir"], "params_avg", "params_avg_%03d.txt" % iavg, ), ) ptl_list.sort() init_params = [None for im in range(len(ptl_list))] for im in range(len(ptl_list)): init_params[im] = [ptl_list[im]] + params_dict[global_dict[ ptl_list[im]][0]][global_dict[ptl_list[im]][1]] sp_utilities.write_text_row( init_params, os.path.join(Tracker["constants"]["masterdir"], "init_isac_params.txt"), ) else: params_dict = 0 list_dict = 0 memlist = 0 params_dict = sp_utilities.wrap_mpi_bcast(params_dict, Blockdata["main_node"], communicator=mpi.MPI_COMM_WORLD) list_dict = sp_utilities.wrap_mpi_bcast(list_dict, Blockdata["main_node"], communicator=mpi.MPI_COMM_WORLD) memlist = sp_utilities.wrap_mpi_bcast(memlist, Blockdata["main_node"], communicator=mpi.MPI_COMM_WORLD) # Now computing! del init_dict tag_sharpen_avg = 1000 ## always apply low pass filter to B_enhanced images to suppress noise in high frequencies enforced_to_H1 = False if B_enhance: if Tracker["constants"]["low_pass_filter"] == -1.0: enforced_to_H1 = True # distribute workload among mpi processes image_start, image_end = sp_applications.MPI_start_end( navg, Blockdata["nproc"], Blockdata["myid"]) if Blockdata["myid"] == Blockdata["main_node"]: cpu_dict = {} for iproc in range(Blockdata["nproc"]): local_image_start, local_image_end = sp_applications.MPI_start_end( navg, Blockdata["nproc"], iproc) for im in range(local_image_start, local_image_end): cpu_dict[im] = iproc else: cpu_dict = 0 cpu_dict = sp_utilities.wrap_mpi_bcast(cpu_dict, Blockdata["main_node"], communicator=mpi.MPI_COMM_WORLD) slist = [None for im in range(navg)] ini_list = [None for im in range(navg)] avg1_list = [None for im in range(navg)] avg2_list = [None for im in range(navg)] data_list = [None for im in range(navg)] plist_dict = {} if Blockdata["myid"] == Blockdata["main_node"]: if B_enhance: sp_global_def.sxprint( "Avg ID B-factor FH1(Res before ali) FH2(Res after ali)") else: sp_global_def.sxprint( "Avg ID FH1(Res before ali) FH2(Res after ali)") FH_list = [[0, 0.0, 0.0] for im in range(navg)] for iavg in range(image_start, image_end): mlist = EMAN2_cppwrap.EMData.read_images( Tracker["constants"]["orgstack"], list_dict[iavg]) for im in range(len(mlist)): sp_utilities.set_params2D(mlist[im], params_dict[iavg][im], xform="xform.align2d") if options.local_alignment: new_avg, plist, FH2 = sp_applications.refinement_2d_local( mlist, Tracker["constants"]["radius"], a_range, x_range, y_range, CTF=do_ctf, SNR=1.0e10, ) plist_dict[iavg] = plist FH1 = -1.0 else: new_avg, frc, plist = compute_average( mlist, Tracker["constants"]["radius"], do_ctf) FH1 = get_optimistic_res(frc) FH2 = -1.0 FH_list[iavg] = [iavg, FH1, FH2] if B_enhance: new_avg, gb = apply_enhancement( new_avg, Tracker["constants"]["B_start"], Tracker["constants"]["pixel_size"], Tracker["constants"]["Bfactor"], ) sp_global_def.sxprint(" %6d %6.3f %4.3f %4.3f" % (iavg, gb, FH1, FH2)) elif adjust_to_given_pw2: roo = sp_utilities.read_text_file(Tracker["constants"]["modelpw"], -1) roo = roo[0] # always on the first column new_avg = adjust_pw_to_model(new_avg, Tracker["constants"]["pixel_size"], roo) sp_global_def.sxprint(" %6d %4.3f %4.3f " % (iavg, FH1, FH2)) elif adjust_to_analytic_model: new_avg = adjust_pw_to_model(new_avg, Tracker["constants"]["pixel_size"], None) sp_global_def.sxprint(" %6d %4.3f %4.3f " % (iavg, FH1, FH2)) elif no_adjustment: pass if Tracker["constants"]["low_pass_filter"] != -1.0: if Tracker["constants"]["low_pass_filter"] == 0.0: low_pass_filter = FH1 elif Tracker["constants"]["low_pass_filter"] == 1.0: low_pass_filter = FH2 if not options.local_alignment: low_pass_filter = FH1 else: low_pass_filter = Tracker["constants"]["low_pass_filter"] if low_pass_filter >= 0.45: low_pass_filter = 0.45 new_avg = sp_filter.filt_tanl(new_avg, low_pass_filter, 0.02) else: # No low pass filter but if enforced if enforced_to_H1: new_avg = sp_filter.filt_tanl(new_avg, FH1, 0.02) if B_enhance: new_avg = sp_fundamentals.fft(new_avg) new_avg.set_attr("members", list_dict[iavg]) new_avg.set_attr("n_objects", len(list_dict[iavg])) slist[iavg] = new_avg sp_global_def.sxprint( time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime()) + " =>", "Refined average %7d" % iavg, ) ## send to main node to write mpi.mpi_barrier(mpi.MPI_COMM_WORLD) for im in range(navg): # avg if (cpu_dict[im] == Blockdata["myid"] and Blockdata["myid"] != Blockdata["main_node"]): sp_utilities.send_EMData(slist[im], Blockdata["main_node"], tag_sharpen_avg) elif (cpu_dict[im] == Blockdata["myid"] and Blockdata["myid"] == Blockdata["main_node"]): slist[im].set_attr("members", memlist[im]) slist[im].set_attr("n_objects", len(memlist[im])) slist[im].write_image( os.path.join(Tracker["constants"]["masterdir"], "class_averages.hdf"), im, ) elif (cpu_dict[im] != Blockdata["myid"] and Blockdata["myid"] == Blockdata["main_node"]): new_avg_other_cpu = sp_utilities.recv_EMData( cpu_dict[im], tag_sharpen_avg) new_avg_other_cpu.set_attr("members", memlist[im]) new_avg_other_cpu.set_attr("n_objects", len(memlist[im])) new_avg_other_cpu.write_image( os.path.join(Tracker["constants"]["masterdir"], "class_averages.hdf"), im, ) if options.local_alignment: if cpu_dict[im] == Blockdata["myid"]: sp_utilities.write_text_row( plist_dict[im], os.path.join( Tracker["constants"]["masterdir"], "ali2d_local_params_avg", "ali2d_local_params_avg_%03d.txt" % im, ), ) if (cpu_dict[im] == Blockdata["myid"] and cpu_dict[im] != Blockdata["main_node"]): sp_utilities.wrap_mpi_send(plist_dict[im], Blockdata["main_node"], mpi.MPI_COMM_WORLD) sp_utilities.wrap_mpi_send(FH_list, Blockdata["main_node"], mpi.MPI_COMM_WORLD) elif (cpu_dict[im] != Blockdata["main_node"] and Blockdata["myid"] == Blockdata["main_node"]): dummy = sp_utilities.wrap_mpi_recv(cpu_dict[im], mpi.MPI_COMM_WORLD) plist_dict[im] = dummy dummy = sp_utilities.wrap_mpi_recv(cpu_dict[im], mpi.MPI_COMM_WORLD) FH_list[im] = dummy[im] else: if (cpu_dict[im] == Blockdata["myid"] and cpu_dict[im] != Blockdata["main_node"]): sp_utilities.wrap_mpi_send(FH_list, Blockdata["main_node"], mpi.MPI_COMM_WORLD) elif (cpu_dict[im] != Blockdata["main_node"] and Blockdata["myid"] == Blockdata["main_node"]): dummy = sp_utilities.wrap_mpi_recv(cpu_dict[im], mpi.MPI_COMM_WORLD) FH_list[im] = dummy[im] mpi.mpi_barrier(mpi.MPI_COMM_WORLD) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if options.local_alignment: if Blockdata["myid"] == Blockdata["main_node"]: ali3d_local_params = [None for im in range(len(ptl_list))] for im in range(len(ptl_list)): ali3d_local_params[im] = [ptl_list[im]] + plist_dict[ global_dict[ptl_list[im]][0]][global_dict[ptl_list[im]][1]] sp_utilities.write_text_row( ali3d_local_params, os.path.join(Tracker["constants"]["masterdir"], "ali2d_local_params.txt"), ) sp_utilities.write_text_row( FH_list, os.path.join(Tracker["constants"]["masterdir"], "FH_list.txt")) else: if Blockdata["myid"] == Blockdata["main_node"]: sp_utilities.write_text_row( FH_list, os.path.join(Tracker["constants"]["masterdir"], "FH_list.txt")) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) target_xr = 3 target_yr = 3 if Blockdata["myid"] == 0: cmd = "{} {} {} {} {} {} {} {} {} {}".format( "sp_chains.py", os.path.join(Tracker["constants"]["masterdir"], "class_averages.hdf"), os.path.join(Tracker["constants"]["masterdir"], "junk.hdf"), os.path.join(Tracker["constants"]["masterdir"], "ordered_class_averages.hdf"), "--circular", "--radius=%d" % Tracker["constants"]["radius"], "--xr=%d" % (target_xr + 1), "--yr=%d" % (target_yr + 1), "--align", ">/dev/null", ) junk = sp_utilities.cmdexecute(cmd) cmd = "{} {}".format( "rm -rf", os.path.join(Tracker["constants"]["masterdir"], "junk.hdf")) junk = sp_utilities.cmdexecute(cmd) return
def ali2d_single_iter( data, numr, wr, cs, tavg, cnx, cny, xrng, yrng, step, nomirror=False, mode="F", CTF=False, random_method="", T=1.0, ali_params="xform.align2d", delta=0.0, ): """ single iteration of 2D alignment using ormq if CTF = True, apply CTF to data (not to reference!) """ maxrin = numr[-1] # length ou = numr[-3] # maximum radius if random_method == "SCF": frotim = [sp_fundamentals.fft(tavg)] xrng = int(xrng + 0.5) yrng = int(yrng + 0.5) cimage = EMAN2_cppwrap.Util.Polar2Dm(sp_fundamentals.scf(tavg), cnx, cny, numr, mode) EMAN2_cppwrap.Util.Frngs(cimage, numr) EMAN2_cppwrap.Util.Applyws(cimage, numr, wr) else: # 2D alignment using rotational ccf in polar coords and quadratic interpolation cimage = EMAN2_cppwrap.Util.Polar2Dm(tavg, cnx, cny, numr, mode) EMAN2_cppwrap.Util.Frngs(cimage, numr) EMAN2_cppwrap.Util.Applyws(cimage, numr, wr) sx_sum = 0.0 sy_sum = 0.0 sxn = 0.0 syn = 0.0 mn = 0 nope = 0 mashi = cnx - ou - 2 for im in range(len(data)): if CTF: # Apply CTF to image ctf_params = data[im].get_attr("ctf") ima = sp_filter.filt_ctf(data[im], ctf_params, True) else: ima = data[im] if random_method == "PCP": sxi = data[im][0][0].get_attr("sxi") syi = data[im][0][0].get_attr("syi") nx = ny = data[im][0][0].get_attr("inx") else: nx = ima.get_xsize() ny = ima.get_ysize() alpha, sx, sy, mirror, dummy = sp_utilities.get_params2D( data[im], ali_params) alpha, sx, sy, dummy = sp_utilities.combine_params2( alpha, sx, sy, mirror, 0.0, -cs[0], -cs[1], 0) alphai, sxi, syi, scalei = sp_utilities.inverse_transform2( alpha, sx, sy) # introduce constraints on parameters to accomodate use of cs centering sxi = min(max(sxi, -mashi), mashi) syi = min(max(syi, -mashi), mashi) # The search range procedure was adjusted for 3D searches, so since in 2D the order of operations is inverted, we have to invert ranges txrng = search_range(nx, ou, sxi, xrng, "ali2d_single_iter") txrng = [txrng[1], txrng[0]] tyrng = search_range(ny, ou, syi, yrng, "ali2d_single_iter") tyrng = [tyrng[1], tyrng[0]] # print im, "B",cnx,sxi,syi,txrng, tyrng # align current image to the reference if random_method == "SHC": """Multiline Comment0""" # For shc combining of shifts is problematic as the image may randomly slide away and never come back. # A possibility would be to reject moves that results in too large departure from the center. # On the other hand, one cannot simply do searches around the proper center all the time, # as if xr is decreased, the image cannot be brought back if the established shifts are further than new range olo = EMAN2_cppwrap.Util.shc( ima, [cimage], txrng, tyrng, step, -1.0, mode, numr, cnx + sxi, cny + syi, "c1", ) ##olo = Util.shc(ima, [cimage], xrng, yrng, step, -1.0, mode, numr, cnx, cny, "c1") if data[im].get_attr("previousmax") < olo[5]: # [angt, sxst, syst, mirrort, peakt] = ormq(ima, cimage, xrng, yrng, step, mode, numr, cnx+sxi, cny+syi, delta) # print angt, sxst, syst, mirrort, peakt,olo angt = olo[0] sxst = olo[1] syst = olo[2] mirrort = int(olo[3]) # combine parameters and set them to the header, ignore previous angle and mirror [alphan, sxn, syn, mn] = sp_utilities.combine_params2(0.0, -sxi, -syi, 0, angt, sxst, syst, mirrort) sp_utilities.set_params2D(data[im], [alphan, sxn, syn, mn, 1.0], ali_params) ##set_params2D(data[im], [angt, sxst, syst, mirrort, 1.0], ali_params) data[im].set_attr("previousmax", olo[5]) else: # Did not find a better peak, but we have to set shifted parameters, as the average shifted sp_utilities.set_params2D(data[im], [alpha, sx, sy, mirror, 1.0], ali_params) nope += 1 mn = 0 sxn = 0.0 syn = 0.0 elif random_method == "SCF": sxst, syst, iref, angt, mirrort, totpeak = multalign2d_scf( data[im], [cimage], frotim, numr, xrng, yrng, ou=ou) [alphan, sxn, syn, mn] = sp_utilities.combine_params2(0.0, -sxi, -syi, 0, angt, sxst, syst, mirrort) sp_utilities.set_params2D(data[im], [alphan, sxn, syn, mn, 1.0], ali_params) elif random_method == "PCP": [angt, sxst, syst, mirrort, peakt] = ormq_fast(data[im], cimage, txrng, tyrng, step, numr, mode, delta) sxst = rings[0][0][0].get_attr("sxi") syst = rings[0][0][0].get_attr("syi") sp_global_def.sxprint(sxst, syst, sx, sy) dummy, sxs, sys, dummy = sp_utilities.inverse_transform2( -angt, sx + sxst, sy + syst) sp_utilities.set_params2D(data[im][0][0], [angt, sxs, sys, mirrort, 1.0], ali_params) else: if nomirror: [angt, sxst, syst, mirrort, peakt] = ornq(ima, cimage, txrng, tyrng, step, mode, numr, cnx + sxi, cny + syi) else: [angt, sxst, syst, mirrort, peakt] = ormq( ima, cimage, txrng, tyrng, step, mode, numr, cnx + sxi, cny + syi, delta, ) # combine parameters and set them to the header, ignore previous angle and mirror [alphan, sxn, syn, mn] = sp_utilities.combine_params2(0.0, -sxi, -syi, 0, angt, sxst, syst, mirrort) sp_utilities.set_params2D(data[im], [alphan, sxn, syn, mn, 1.0], ali_params) if mn == 0: sx_sum += sxn else: sx_sum -= sxn sy_sum += syn return sx_sum, sy_sum, nope
def combine_isac_params(isac_dir, classavgstack, chains_params_file, old_combined_parts, classdoc, combined_params_file, log=False, verbose=False): """ Combines initial and all_params from ISAC. Arguments: isac_dir : ISAC directory classavgstack : Input image stack chains_params_file : Input alignment parameters applied to averages in sp_chains old_combined_parts classdoc combined_params_file : Output combined alignment parameters log : instance of Logger class verbose : (boolean) Whether to write to screen """ from sp_utilities import combine_params2, read_text_row # File-handling init_params_file = os.path.join(isac_dir, "2dalignment", "initial2Dparams.txt") all_params_file = os.path.join(isac_dir, "all_parameters.txt") init_params_list = read_text_row(init_params_file) all_params = read_text_row(all_params_file) isac_shrink_path = os.path.join(isac_dir, "README_shrink_ratio.txt") isac_shrink_file = open(isac_shrink_path, "r") isac_shrink_lines = isac_shrink_file.readlines() isac_shrink_ratio = float(isac_shrink_lines[5]) """ Three cases: 1) Using class_averages.hdf 2) Using ordered_class_averages.hdf, but chains_params.txt doesn't exist 3) Using ordered_class_averages.hdf and chains_params.txt """ msg = "Combining alignment parameters from %s and %s, dividing by %s, and writing to %s" % \ (init_params_file, all_params_file, isac_shrink_ratio, combined_params_file) # Check if using ordered class averages and whether chains_params exists if os.path.basename(classavgstack) == 'ordered_class_averages.hdf': if not os.path.exists(chains_params_file): msg += "WARNING: '%s' does not exist. " % chains_params_file msg += " Using '%s' but alignment parameters correspond to 'class_averages.hdf'.\n" % classavgstack else: msg = "Combining alignment parameters from %s, %s, and %s, dividing by %s, and writing to %s" % \ (init_params_file, all_params_file, chains_params_file, isac_shrink_ratio, combined_params_file) print_log_msg(msg, log, verbose) if os.path.basename( classavgstack) == 'ordered_class_averages.hdf' and os.path.exists( chains_params_file): chains_params_list = read_text_row(chains_params_file) old_combined_list = read_text_row(old_combined_parts) num_classes = EMUtil.get_image_count(classavgstack) tmp_combined = [] # Loop through classes for class_num in range(num_classes): # Extract members image = get_im(classavgstack, class_num) members = sorted(image.get_attr("members")) old_class_list = read_text_row(classdoc.format(class_num)) new_class_list = [] # Loop through particles for idx, im in enumerate(members): tmp_par = combine_params2( init_params_list[im][0], init_params_list[im][1], init_params_list[im][2], init_params_list[im][3], all_params[im][0], all_params[im][1] / isac_shrink_ratio, all_params[im][2] / isac_shrink_ratio, all_params[im][3]) # Combine with class-average parameters P = combine_params2(tmp_par[0], tmp_par[1], tmp_par[2], tmp_par[3], chains_params_list[class_num][2], chains_params_list[class_num][3], chains_params_list[class_num][4], chains_params_list[class_num][5]) tmp_combined.append([im, P[0], P[1], P[2], P[3]]) # Need to update class number in class docs old_part_num = old_class_list[idx] try: new_part_num = old_combined_list.index(old_part_num) except ValueError: print( "Couldn't find particle: class_num %s, old_part_num %s, new_part_num %s" % (class_num, old_part_num[0], new_part_num)) new_class_list.append(new_part_num) # End particle-loop # Overwrite pre-existing class doc write_text_row(new_class_list, classdoc.format(class_num)) # End class-loop # Sort by particle number combined_params = sorted(tmp_combined, key=itemgetter(0)) # Remove first column for row in combined_params: del row[0] # Not applying alignments of ordered_class_averages else: combined_params = [] # Loop through images for im in range(len(all_params)): P = combine_params2( init_params_list[im][0], init_params_list[im][1], init_params_list[im][2], init_params_list[im][3], all_params[im][0], all_params[im][1] / isac_shrink_ratio, all_params[im][2] / isac_shrink_ratio, all_params[im][3]) combined_params.append([P[0], P[1], P[2], P[3], 1.0]) write_text_row(combined_params, combined_params_file) print_log_msg( 'Wrote %s entries to %s\n' % (len(combined_params), combined_params_file), log, verbose) return combined_params
def mref_ali2d_MPI(stack, refim, outdir, maskfile=None, ir=1, ou=-1, rs=1, xrng=0, yrng=0, step=1, center=1, maxit=10, CTF=False, snr=1.0, user_func_name="ref_ali2d", rand_seed=1000): # 2D multi-reference alignment using rotational ccf in polar coordinates and quadratic interpolation from sp_utilities import model_circle, combine_params2, inverse_transform2, drop_image, get_image, get_im from sp_utilities import reduce_EMData_to_root, bcast_EMData_to_all, bcast_number_to_all from sp_utilities import send_attr_dict from sp_utilities import center_2D from sp_statistics import fsc_mask from sp_alignment import Numrinit, ringwe, search_range from sp_fundamentals import rot_shift2D, fshift from sp_utilities import get_params2D, set_params2D from random import seed, randint from sp_morphology import ctf_2 from sp_filter import filt_btwl, filt_params from numpy import reshape, shape from sp_utilities import print_msg, print_begin_msg, print_end_msg import os import sys import shutil from sp_applications import MPI_start_end from mpi import mpi_comm_size, mpi_comm_rank, MPI_COMM_WORLD from mpi import mpi_reduce, mpi_bcast, mpi_barrier, mpi_recv, mpi_send from mpi import MPI_SUM, MPI_FLOAT, MPI_INT number_of_proc = mpi_comm_size(MPI_COMM_WORLD) myid = mpi_comm_rank(MPI_COMM_WORLD) main_node = 0 # create the output directory, if it does not exist if os.path.exists(outdir): ERROR( 'Output directory exists, please change the name and restart the program', "mref_ali2d_MPI ", 1, myid) mpi_barrier(MPI_COMM_WORLD) import sp_global_def if myid == main_node: os.mkdir(outdir) sp_global_def.LOGFILE = os.path.join(outdir, sp_global_def.LOGFILE) print_begin_msg("mref_ali2d_MPI") nima = EMUtil.get_image_count(stack) image_start, image_end = MPI_start_end(nima, number_of_proc, myid) nima = EMUtil.get_image_count(stack) ima = EMData() ima.read_image(stack, image_start) first_ring = int(ir) last_ring = int(ou) rstep = int(rs) max_iter = int(maxit) if max_iter == 0: max_iter = 10 auto_stop = True else: auto_stop = False if myid == main_node: print_msg("Input stack : %s\n" % (stack)) print_msg("Reference stack : %s\n" % (refim)) print_msg("Output directory : %s\n" % (outdir)) print_msg("Maskfile : %s\n" % (maskfile)) print_msg("Inner radius : %i\n" % (first_ring)) nx = ima.get_xsize() # default value for the last ring if last_ring == -1: last_ring = nx / 2 - 2 if myid == main_node: print_msg("Outer radius : %i\n" % (last_ring)) print_msg("Ring step : %i\n" % (rstep)) print_msg("X search range : %f\n" % (xrng)) print_msg("Y search range : %f\n" % (yrng)) print_msg("Translational step : %f\n" % (step)) print_msg("Center type : %i\n" % (center)) print_msg("Maximum iteration : %i\n" % (max_iter)) print_msg("CTF correction : %s\n" % (CTF)) print_msg("Signal-to-Noise Ratio : %f\n" % (snr)) print_msg("Random seed : %i\n\n" % (rand_seed)) print_msg("User function : %s\n" % (user_func_name)) import sp_user_functions user_func = sp_user_functions.factory[user_func_name] if maskfile: import types if type(maskfile) is bytes: mask = get_image(maskfile) else: mask = maskfile else: mask = model_circle(last_ring, nx, nx) # references, do them on all processors... refi = [] numref = EMUtil.get_image_count(refim) # IMAGES ARE SQUARES! center is in SPIDER convention cnx = nx / 2 + 1 cny = cnx mode = "F" #precalculate rings numr = Numrinit(first_ring, last_ring, rstep, mode) wr = ringwe(numr, mode) # prepare reference images on all nodes ima.to_zero() for j in range(numref): # even, odd, numer of even, number of images. After frc, totav refi.append([get_im(refim, j), ima.copy(), 0]) # for each node read its share of data data = EMData.read_images(stack, list(range(image_start, image_end))) for im in range(image_start, image_end): data[im - image_start].set_attr('ID', im) if myid == main_node: seed(rand_seed) a0 = -1.0 again = True Iter = 0 ref_data = [mask, center, None, None] while Iter < max_iter and again: ringref = [] mashi = cnx - last_ring - 2 for j in range(numref): refi[j][0].process_inplace("normalize.mask", { "mask": mask, "no_sigma": 1 }) # normalize reference images to N(0,1) cimage = Util.Polar2Dm(refi[j][0], cnx, cny, numr, mode) Util.Frngs(cimage, numr) Util.Applyws(cimage, numr, wr) ringref.append(cimage) # zero refi refi[j][0].to_zero() refi[j][1].to_zero() refi[j][2] = 0 assign = [[] for i in range(numref)] # begin MPI section for im in range(image_start, image_end): alpha, sx, sy, mirror, scale = get_params2D(data[im - image_start]) # Why inverse? 07/11/2015 PAP alphai, sxi, syi, scalei = inverse_transform2(alpha, sx, sy) # normalize data[im - image_start].process_inplace("normalize.mask", { "mask": mask, "no_sigma": 0 }) # subtract average under the mask # If shifts are outside of the permissible range, reset them if (abs(sxi) > mashi or abs(syi) > mashi): sxi = 0.0 syi = 0.0 set_params2D(data[im - image_start], [0.0, 0.0, 0.0, 0, 1.0]) ny = nx txrng = search_range(nx, last_ring, sxi, xrng, "mref_ali2d_MPI") txrng = [txrng[1], txrng[0]] tyrng = search_range(ny, last_ring, syi, yrng, "mref_ali2d_MPI") tyrng = [tyrng[1], tyrng[0]] # align current image to the reference [angt, sxst, syst, mirrort, xiref, peakt] = Util.multiref_polar_ali_2d(data[im - image_start], ringref, txrng, tyrng, step, mode, numr, cnx + sxi, cny + syi) iref = int(xiref) # combine parameters and set them to the header, ignore previous angle and mirror [alphan, sxn, syn, mn] = combine_params2(0.0, -sxi, -syi, 0, angt, sxst, syst, (int)(mirrort)) set_params2D(data[im - image_start], [alphan, sxn, syn, int(mn), scale]) data[im - image_start].set_attr('assign', iref) # apply current parameters and add to the average temp = rot_shift2D(data[im - image_start], alphan, sxn, syn, mn) it = im % 2 Util.add_img(refi[iref][it], temp) assign[iref].append(im) #assign[im] = iref refi[iref][2] += 1.0 del ringref # end MPI section, bring partial things together, calculate new reference images, broadcast them back for j in range(numref): reduce_EMData_to_root(refi[j][0], myid, main_node) reduce_EMData_to_root(refi[j][1], myid, main_node) refi[j][2] = mpi_reduce(refi[j][2], 1, MPI_FLOAT, MPI_SUM, main_node, MPI_COMM_WORLD) if (myid == main_node): refi[j][2] = int(refi[j][2][0]) # gather assignements for j in range(numref): if myid == main_node: for n in range(number_of_proc): if n != main_node: import sp_global_def ln = mpi_recv(1, MPI_INT, n, sp_global_def.SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) lis = mpi_recv(ln[0], MPI_INT, n, sp_global_def.SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) for l in range(ln[0]): assign[j].append(int(lis[l])) else: import sp_global_def mpi_send(len(assign[j]), 1, MPI_INT, main_node, sp_global_def.SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) mpi_send(assign[j], len(assign[j]), MPI_INT, main_node, sp_global_def.SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) if myid == main_node: # replace the name of the stack with reference with the current one refim = os.path.join(outdir, "aqm%03d.hdf" % Iter) a1 = 0.0 ave_fsc = [] for j in range(numref): if refi[j][2] < 4: #ERROR("One of the references vanished","mref_ali2d_MPI",1) # if vanished, put a random image (only from main node!) there assign[j] = [] assign[j].append( randint(image_start, image_end - 1) - image_start) refi[j][0] = data[assign[j][0]].copy() #print 'ERROR', j else: #frsc = fsc_mask(refi[j][0], refi[j][1], mask, 1.0, os.path.join(outdir,"drm%03d%04d"%(Iter, j))) from sp_statistics import fsc frsc = fsc( refi[j][0], refi[j][1], 1.0, os.path.join(outdir, "drm%03d%04d.txt" % (Iter, j))) Util.add_img(refi[j][0], refi[j][1]) Util.mul_scalar(refi[j][0], 1.0 / float(refi[j][2])) if ave_fsc == []: for i in range(len(frsc[1])): ave_fsc.append(frsc[1][i]) c_fsc = 1 else: for i in range(len(frsc[1])): ave_fsc[i] += frsc[1][i] c_fsc += 1 #print 'OK', j, len(frsc[1]), frsc[1][0:5], ave_fsc[0:5] #print 'sum', sum(ave_fsc) if sum(ave_fsc) != 0: for i in range(len(ave_fsc)): ave_fsc[i] /= float(c_fsc) frsc[1][i] = ave_fsc[i] for j in range(numref): ref_data[2] = refi[j][0] ref_data[3] = frsc refi[j][0], cs = user_func(ref_data) # write the current average TMP = [] for i_tmp in range(len(assign[j])): TMP.append(float(assign[j][i_tmp])) TMP.sort() refi[j][0].set_attr_dict({'ave_n': refi[j][2], 'members': TMP}) del TMP refi[j][0].process_inplace("normalize.mask", { "mask": mask, "no_sigma": 1 }) refi[j][0].write_image(refim, j) Iter += 1 msg = "ITERATION #%3d %d\n\n" % (Iter, again) print_msg(msg) for j in range(numref): msg = " group #%3d number of particles = %7d\n" % ( j, refi[j][2]) print_msg(msg) Iter = bcast_number_to_all(Iter, main_node) # need to tell all if again: for j in range(numref): bcast_EMData_to_all(refi[j][0], myid, main_node) # clean up del assign # write out headers and STOP, under MPI writing has to be done sequentially (time-consumming) mpi_barrier(MPI_COMM_WORLD) if CTF and data_had_ctf == 0: for im in range(len(data)): data[im].set_attr('ctf_applied', 0) par_str = ['xform.align2d', 'assign', 'ID'] if myid == main_node: from sp_utilities import file_type if (file_type(stack) == "bdb"): from sp_utilities import recv_attr_dict_bdb recv_attr_dict_bdb(main_node, stack, data, par_str, image_start, image_end, number_of_proc) else: from sp_utilities import recv_attr_dict recv_attr_dict(main_node, stack, data, par_str, image_start, image_end, number_of_proc) else: send_attr_dict(main_node, data, par_str, image_start, image_end) if myid == main_node: print_end_msg("mref_ali2d_MPI")
def mref_ali2d(stack, refim, outdir, maskfile=None, ir=1, ou=-1, rs=1, xrng=0, yrng=0, step=1, center=1, maxit=0, CTF=False, snr=1.0, user_func_name="ref_ali2d", rand_seed=1000, MPI=False): """ Name mref_ali2d - Perform 2-D multi-reference alignment of an image series Input stack: set of 2-D images in a stack file, images have to be squares refim: set of initial reference 2-D images in a stack file maskfile: optional maskfile to be used in the alignment inner_radius: inner radius for rotational correlation > 0 outer_radius: outer radius for rotational correlation < nx/2-1 ring_step: step between rings in rotational correlation >0 x_range: range for translation search in x direction, search is +/xr y_range: range for translation search in y direction, search is +/yr translation_step: step of translation search in both directions center: center the average max_iter: maximum number of iterations the program will perform CTF: if this flag is set, the program will use CTF information provided in file headers snr: signal-to-noise ratio of the data rand_seed: the seed used for generating random numbers MPI: whether to use MPI version Output output_directory: directory name into which the output files will be written. header: the alignment parameters are stored in the headers of input files as 'xform.align2d'. """ # 2D multi-reference alignment using rotational ccf in polar coordinates and quadratic interpolation if MPI: mref_ali2d_MPI(stack, refim, outdir, maskfile, ir, ou, rs, xrng, yrng, step, center, maxit, CTF, snr, user_func_name, rand_seed) return from sp_utilities import model_circle, combine_params2, inverse_transform2, drop_image, get_image from sp_utilities import center_2D, get_im, get_params2D, set_params2D from sp_statistics import fsc from sp_alignment import Numrinit, ringwe, fine_2D_refinement, search_range from sp_fundamentals import rot_shift2D, fshift from random import seed, randint import os import sys from sp_utilities import print_begin_msg, print_end_msg, print_msg import shutil # create the output directory, if it does not exist if os.path.exists(outdir): shutil.rmtree( outdir ) #ERROR('Output directory exists, please change the name and restart the program', "mref_ali2d", 1) os.mkdir(outdir) import sp_global_def sp_global_def.LOGFILE = os.path.join(outdir, sp_global_def.LOGFILE) first_ring = int(ir) last_ring = int(ou) rstep = int(rs) max_iter = int(maxit) print_begin_msg("mref_ali2d") print_msg("Input stack : %s\n" % (stack)) print_msg("Reference stack : %s\n" % (refim)) print_msg("Output directory : %s\n" % (outdir)) print_msg("Maskfile : %s\n" % (maskfile)) print_msg("Inner radius : %i\n" % (first_ring)) ima = EMData() ima.read_image(stack, 0) nx = ima.get_xsize() # default value for the last ring if last_ring == -1: last_ring = nx / 2 - 2 print_msg("Outer radius : %i\n" % (last_ring)) print_msg("Ring step : %i\n" % (rstep)) print_msg("X search range : %i\n" % (xrng)) print_msg("Y search range : %i\n" % (yrng)) print_msg("Translational step : %i\n" % (step)) print_msg("Center type : %i\n" % (center)) print_msg("Maximum iteration : %i\n" % (max_iter)) print_msg("CTF correction : %s\n" % (CTF)) print_msg("Signal-to-Noise Ratio : %f\n" % (snr)) print_msg("Random seed : %i\n\n" % (rand_seed)) print_msg("User function : %s\n" % (user_func_name)) output = sys.stdout import sp_user_functions user_func = sp_user_functions.factory[user_func_name] if maskfile: import types if type(maskfile) is bytes: mask = get_image(maskfile) else: mask = maskfile else: mask = model_circle(last_ring, nx, nx) # references refi = [] numref = EMUtil.get_image_count(refim) # IMAGES ARE SQUARES! center is in SPIDER convention cnx = nx / 2 + 1 cny = cnx mode = "F" #precalculate rings numr = Numrinit(first_ring, last_ring, rstep, mode) wr = ringwe(numr, mode) # reference images params = [] #read all data data = EMData.read_images(stack) nima = len(data) # prepare the reference ima.to_zero() for j in range(numref): temp = EMData() temp.read_image(refim, j) # eve, odd, numer of even, number of images. After frc, totav refi.append([temp, ima.copy(), 0]) seed(rand_seed) again = True ref_data = [mask, center, None, None] Iter = 0 while Iter < max_iter and again: ringref = [] #print "numref",numref ### Reference ### mashi = cnx - last_ring - 2 for j in range(numref): refi[j][0].process_inplace("normalize.mask", { "mask": mask, "no_sigma": 1 }) cimage = Util.Polar2Dm(refi[j][0], cnx, cny, numr, mode) Util.Frngs(cimage, numr) Util.Applyws(cimage, numr, wr) ringref.append(cimage) assign = [[] for i in range(numref)] sx_sum = [0.0] * numref sy_sum = [0.0] * numref for im in range(nima): alpha, sx, sy, mirror, scale = get_params2D(data[im]) # Why inverse? 07/11/2015 PAP alphai, sxi, syi, scalei = inverse_transform2(alpha, sx, sy) # normalize data[im].process_inplace("normalize.mask", { "mask": mask, "no_sigma": 0 }) # If shifts are outside of the permissible range, reset them if (abs(sxi) > mashi or abs(syi) > mashi): sxi = 0.0 syi = 0.0 set_params2D(data[im], [0.0, 0.0, 0.0, 0, 1.0]) ny = nx txrng = search_range(nx, last_ring, sxi, xrng, "mref_ali2d") txrng = [txrng[1], txrng[0]] tyrng = search_range(ny, last_ring, syi, yrng, "mref_ali2d") tyrng = [tyrng[1], tyrng[0]] # align current image to the reference #[angt, sxst, syst, mirrort, xiref, peakt] = Util.multiref_polar_ali_2d_p(data[im], # ringref, txrng, tyrng, step, mode, numr, cnx+sxi, cny+syi) #print(angt, sxst, syst, mirrort, xiref, peakt) [angt, sxst, syst, mirrort, xiref, peakt] = Util.multiref_polar_ali_2d(data[im], ringref, txrng, tyrng, step, mode, numr, cnx + sxi, cny + syi) iref = int(xiref) # combine parameters and set them to the header, ignore previous angle and mirror [alphan, sxn, syn, mn] = combine_params2(0.0, -sxi, -syi, 0, angt, sxst, syst, int(mirrort)) set_params2D(data[im], [alphan, sxn, syn, int(mn), scale]) if mn == 0: sx_sum[iref] += sxn else: sx_sum[iref] -= sxn sy_sum[iref] += syn data[im].set_attr('assign', iref) # apply current parameters and add to the average temp = rot_shift2D(data[im], alphan, sxn, syn, mn) it = im % 2 Util.add_img(refi[iref][it], temp) assign[iref].append(im) refi[iref][2] += 1 del ringref if again: a1 = 0.0 for j in range(numref): msg = " group #%3d number of particles = %7d\n" % ( j, refi[j][2]) print_msg(msg) if refi[j][2] < 4: #ERROR("One of the references vanished","mref_ali2d",1) # if vanished, put a random image there assign[j] = [] assign[j].append(randint(0, nima - 1)) refi[j][0] = data[assign[j][0]].copy() else: max_inter = 0 # switch off fine refi. br = 1.75 # the loop has to for INter in range(max_inter + 1): # Calculate averages at least ones, meaning even if no within group refinement was requested frsc = fsc( refi[j][0], refi[j][1], 1.0, os.path.join(outdir, "drm_%03d_%04d.txt" % (Iter, j))) Util.add_img(refi[j][0], refi[j][1]) Util.mul_scalar(refi[j][0], 1.0 / float(refi[j][2])) ref_data[2] = refi[j][0] ref_data[3] = frsc refi[j][0], cs = user_func(ref_data) if center == -1: cs[0] = sx_sum[j] / len(assign[j]) cs[1] = sy_sum[j] / len(assign[j]) refi[j][0] = fshift(refi[j][0], -cs[0], -cs[1]) for i in range(len(assign[j])): im = assign[j][i] alpha, sx, sy, mirror, scale = get_params2D( data[im]) alphan, sxn, syn, mirrorn = combine_params2( alpha, sx, sy, mirror, 0.0, -cs[0], -cs[1], 0) set_params2D( data[im], [alphan, sxn, syn, int(mirrorn), scale]) # refine images within the group # Do the refinement only if max_inter>0, but skip it for the last iteration. if INter < max_inter: fine_2D_refinement(data, br, mask, refi[j][0], j) # Calculate updated average refi[j][0].to_zero() refi[j][1].to_zero() for i in range(len(assign[j])): im = assign[j][i] alpha, sx, sy, mirror, scale = get_params2D( data[im]) # apply current parameters and add to the average temp = rot_shift2D(data[im], alpha, sx, sy, mn) it = im % 2 Util.add_img(refi[j][it], temp) # write the current average TMP = [] for i_tmp in range(len(assign[j])): TMP.append(float(assign[j][i_tmp])) TMP.sort() refi[j][0].set_attr_dict({'ave_n': refi[j][2], 'members': TMP}) del TMP # replace the name of the stack with reference with the current one newrefim = os.path.join(outdir, "aqm%03d.hdf" % Iter) refi[j][0].write_image(newrefim, j) Iter += 1 msg = "ITERATION #%3d \n" % (Iter) print_msg(msg) newrefim = os.path.join(outdir, "multi_ref.hdf") for j in range(numref): refi[j][0].write_image(newrefim, j) from sp_utilities import write_headers write_headers(stack, data, list(range(nima))) print_end_msg("mref_ali2d")