def test_combinemaps_Halfset(self): testargs_new = [ path.join(ABSOLUTE_BIN_PATH, "sp_process.py"), "--combinemaps", path.join(ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "11_MERIDIEN", "vol_0_unfil_028.hdf"), path.join(ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "11_MERIDIEN", "vol_1_unfil_028.hdf"), "--output_dir=" + self.new_output_folder, "--pixel_size=1.14", "--do_adaptive_mask", "--threshold=0.02", "--mtf=" + path.join(ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "FalconIImtf.txt") ] testargs_old = [ path.join(ABSOLUTE_OLDBIN_PATH, "sp_process.py"), "--combinemaps", path.join(ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "11_MERIDIEN", "vol_0_unfil_028.hdf"), path.join(ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "11_MERIDIEN", "vol_1_unfil_028.hdf"), "--output_dir=" + self.old_output_folder, "--pixel_size=1.14", "--do_adaptive_mask", "--threshold=0.02", "--mtf=" + path.join(ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "FalconIImtf.txt") ] with patch.object(sys, 'argv', testargs_new): fu.main() with patch.object(sys, 'argv', testargs_old): oldfu.main() return_new = get_im(path.join(self.new_output_folder, self.fname)) return_old = get_im(path.join(self.old_output_folder, self.fname)) self.assertTrue( array_equal(return_new.get_3dview(), return_old.get_3dview()))
def test_calls(self): old_final = "old_final.hdf" new_final = "new_final.hdf" testargs_new = [ str(MPI_PATH) + " -np " + str(NUM_PROC) + " " + path.join(ABSOLUTE_BIN_PATH, "sp_filterlocal.py") + " " + path.join(ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "12_POSTREFINER", "vol_combined.hdf") + " " + path.join(ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "17_LOCAL_RES", "localres.hdf") + " " + path.join(ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "12_POSTREFINER", "vol_adaptive_mask.hdf") + " " + new_final + " --radius=145 --MPI" ] testargs_old = [ str(MPI_PATH) + " -np " + str(NUM_PROC) + " " + path.join(ABSOLUTE_OLDBIN_PATH, "sp_filterlocal.py") + " " + path.join(ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "12_POSTREFINER", "vol_combined.hdf") + " " + path.join(ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "17_LOCAL_RES", "localres.hdf") + " " + path.join(ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "12_POSTREFINER", "vol_adaptive_mask.hdf") + " " + old_final + " --radius=145 --MPI" ] a = subprocess.run(args=testargs_new, shell=True, stderr=subprocess.STDOUT) b = subprocess.run(args=testargs_old, shell=True, stderr=subprocess.STDOUT) return_old = get_im(old_final) return_new = get_im(new_final) self.assertTrue( array_equal(return_old.get_3dview(), return_new.get_3dview())) self.assertTrue( allclose( return_new.get_3dview().flatten().tolist()[4034427:4034527], [ 3.201385334250517e-05, -0.0033583296462893486, -0.0033261957578361034, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], atol=0.01)) remove_list_of_file([old_final, new_final])
def test_(self): out_dir_old = "oldviper" out_dir_new = "newviper" filename_vol = "volf.hdf" filename_refvol = "refvol2.hdf" testcommand_new = ( MPI_PATH + " -np " + str(NUM_PROC) + " " + path.join(ABSOLUTE_OLDBIN_PATH, "sp_viper.py") + " " + path.join(ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "04_ISAC", "class_averages.hdf") + " " + out_dir_old + " --sym=c5") testcommand_old = ( MPI_PATH + " -np " + str(NUM_PROC) + " " + path.join(ABSOLUTE_BIN_PATH, "sp_viper.py") + " " + path.join(ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "04_ISAC", "class_averages.hdf") + " " + out_dir_new + " --sym=c5") subprocess.run(args=[testcommand_new], shell=True, stderr=subprocess.STDOUT) subprocess.run(args=[testcommand_old], shell=True, stderr=subprocess.STDOUT) return_new_avg = get_im( path.join(ABSOLUTE_PATH, out_dir_new, filename_vol)) return_new_var = get_im( path.join(ABSOLUTE_PATH, out_dir_new, filename_refvol)) return_old_avg = get_im( path.join(ABSOLUTE_PATH, out_dir_old, filename_vol)) return_old_var = get_im( path.join(ABSOLUTE_PATH, out_dir_old, filename_refvol)) self.assertTrue( allclose(return_new_avg.get_3dview(), return_old_avg.get_3dview(), atol=TOLERANCE)) self.assertTrue( allclose(return_old_var.get_3dview(), return_new_var.get_3dview(), atol=TOLERANCE)) remove_dir(out_dir_new) remove_dir(out_dir_old)
def read_volume(path_vol_1, path_vol_2, path_mask=None, resolution=None, pixel_size=None): """ Reads the 3D density map :param path_vol_1: Path to the density map :param path_mask: If provided, the volume is masked. :return: Volume for density map """ print("Read volumes, masking them and prepare them for reprojections") mask_vol = None vol2 = None if path_mask is not None: mask_vol = sp_utilities.get_im(path_mask) vol1 = prepare_volume(path_vol_1, mask_vol, resolution, pixel_size) if path_vol_2: vol2 = prepare_volume(path_vol_2, mask_vol, resolution, pixel_size) if mask_vol: mask_vol = sp_projection.prep_vol(mask_vol, interpolation_method=1) return vol1, vol2, mask_vol
def resample_prepare(prjfile, nvol, snr, CTF, npad): from sp_utilities import get_im nx = get_im(prjfile, 0).get_xsize() fftvols = [None] * nvol wgtvols = [None] * nvol rectors = [None] * nvol for i in range(nvol): fftvols[i] = EMData() wgtvols[i] = EMData() if CTF: params = { "size": nx, "npad": npad, "snr": snr, "weight": wgtvols[i], "fftvol": fftvols[i] } rectors[i] = Reconstructors.get("nn4_ctf", params) else: params = { "size": nx, "npad": npad, "snr": snr, "weight": wgtvols[i], "fftvol": fftvols[i] } rectors[i] = Reconstructors.get("nn4", params) rectors[i].setup() return rectors, fftvols, wgtvols
def test_(self): testargs_new = [ path.join(ABSOLUTE_BIN_PATH, "sp_mask.py"), path.join(ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "09_ADJUSTMENT", "vol3d_ref_moon_eliminated.hdf"), "--pixel_size=1.14", self.new_output_folder, "--mol_mass=1400", "--edge_width=10" ] testargs_old = [ path.join(ABSOLUTE_OLDBIN_PATH, "sp_mask.py"), path.join(ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "09_ADJUSTMENT", "vol3d_ref_moon_eliminated.hdf"), "--pixel_size=1.14", self.old_output_folder, "--mol_mass=1400", "--edge_width=10" ] with patch.object(sys, 'argv', testargs_new): fu.main() with patch.object(sys, 'argv', testargs_old): oldfu.main() old_value = get_im(path.join(self.old_output_folder, self.filename)) new_value = get_im(path.join(self.new_output_folder, self.filename)) self.assertTrue( array_equal(old_value.get_3dview(), new_value.get_3dview())) self.assertTrue( allclose( new_value.get_3dview().flatten().tolist()[3022799:3022899], [ 0.00024921807926148176, 0.0005635463166981936, 0.0005635463166981936, 0.00024921807926148176, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ]))
def genbuf(prjfile, bufprefix, beg, end, CTF, npad, verbose=0): if (verbose == 1): finfo = open(os.path.join(outdir, "progress.txt"), "w") else: finfo = None start_time = time() istore = newfile_store(bufprefix, npad, CTF) for i in range(beg, end): prj = get_im(prjfile, i) istore.add_image(prj, prj.get_attr("xform.projection")) if (not (finfo is None) and ((i % 100 == 99 or i == end - 1))): finfo.write("%6d buffered, time: %10.3f\n" % (i + 1, time() - start_time)) finfo.flush()
def cml_export_struc(stack, outdir, irun, Ori): from sp_projection import plot_angles from sp_utilities import set_params_proj, get_im global g_n_prj pagls = [] for i in range(g_n_prj): data = get_im(stack, i) p = [Ori[4 * i], Ori[4 * i + 1], Ori[4 * i + 2], 0.0, 0.0] set_params_proj(data, p) data.write_image(outdir + '/structure_%03i.hdf' % irun, i) # prepare angles to plot pagls.append([Ori[4 * i], Ori[4 * i + 1], Ori[4 * i + 2]]) # plot angles im = plot_angles(pagls) im.write_image(outdir + '/plot_agls_%03i.hdf' % irun)
def do_volume_mask(ref_data): """ 1. - volume 2. - Tracker, see meridien 3. - current iteration number """ # Retrieve the function specific input arguments from ref_data vol = ref_data[0] Tracker = ref_data[1] mainiteration = ref_data[2] if Tracker["constants"]["mask3D"] is None: vol = sp_morphology.cosinemask(vol, radius=Tracker["constants"]["radius"]) else: EMAN2_cppwrap.Util.mul_img( vol, sp_utilities.get_im(Tracker["constants"]["mask3D"])) return vol
def prepare_volume(volume_path, mask=None, resolution=None, pixel_size=None): """ Prepares the volume for reprojections :param volume_path: Path to volume file :param mask: Particle mask :param resolution: Resolution of the current reconstruction. :return: """ vol = sp_utilities.get_im(volume_path) if resolution: vol = vol.process( "filter.lowpass.gauss", { "cutoff_freq": old_div(1.0, resolution), "apix": pixel_size }, ) if mask: vol = vol * mask vol = sp_projection.prep_vol(vol, interpolation_method=1) return vol
def generate_helimic(refvol, outdir, pixel, CTF=False, Cs=2.0, voltage=200.0, ampcont=10.0, nonoise=False, rand_seed=14567): from sp_utilities import model_blank, model_gauss, model_gauss_noise, pad, get_im from random import random from sp_projection import prgs, prep_vol from sp_filter import filt_gaussl, filt_ctf from EMAN2 import EMAN2Ctf if os.path.exists(outdir): ERROR( "Output directory exists, please change the name and restart the program" ) return os.mkdir(outdir) seed(rand_seed) Util.set_randnum_seed(rand_seed) angles = [] for i in range(3): angles.append([0.0 + 60.0 * i, 90.0 - i * 5, 0.0, 0.0, 0.0]) nangle = len(angles) volfts = get_im(refvol) nx = volfts.get_xsize() ny = volfts.get_ysize() nz = volfts.get_zsize() volfts, kbx, kby, kbz = prep_vol(volfts) iprj = 0 width = 500 xstart = 0 ystart = 0 for idef in range(3, 6): mic = model_blank(2048, 2048) #defocus = idef*0.2 defocus = idef * 0.6 ##@ming if CTF: #ctf = EMAN2Ctf() #ctf.from_dict( {"defocus":defocus, "cs":Cs, "voltage":voltage, "apix":pixel, "ampcont":ampcont, "bfactor":0.0} ) from sp_utilities import generate_ctf ctf = generate_ctf( [defocus, 2, 200, 1.84, 0.0, ampcont, defocus * 0.2, 80] ) ##@ming the range of astigmatism amplitude is between 10 percent and 22 percent. 20 percent is a good choice. i = idef - 4 for k in range(1): psi = 90 + 10 * i proj = prgs( volfts, kbz, [angles[idef - 3][0], angles[idef - 3][1], psi, 0.0, 0.0], kbx, kby) proj = Util.window(proj, 320, nz) mic += pad(proj, 2048, 2048, 1, 0.0, 750 * i, 20 * i, 0) if not nonoise: mic += model_gauss_noise(30.0, 2048, 2048) if CTF: #apply CTF mic = filt_ctf(mic, ctf) if not nonoise: mic += filt_gaussl(model_gauss_noise(17.5, 2048, 2048), 0.3) mic.write_image("%s/mic%1d.hdf" % (outdir, idef - 3), 0)
def mode_meridien(reconfile, classavgstack, classdocs, partangles, selectdoc, maxshift, outerrad, outanglesdoc, outaligndoc, interpolation_method=1, outliers=None, goodclassparttemplate=None, alignopt='apsh', ringstep=1, log=None, verbose=False): # Resample reference recondata = EMAN2.EMData(reconfile) idim = recondata['nx'] reconprep = prep_vol(recondata, npad=2, interpolation_method=interpolation_method) # Initialize output angles outangleslist = [] outalignlist = [] # Read class lists classdoclist = glob.glob(classdocs) partangleslist = read_text_row(partangles) # Loop through class lists for classdoc in classdoclist: # [classdoclist[32]]: # # Strip out three-digit filenumber classexample = os.path.splitext(classdoc) classnum = int(classexample[0][-3:]) # Initial average [avg_phi_init, avg_theta_init] = average_angles(partangleslist, classdoc, selectdoc=selectdoc) # Look for outliers if outliers: [avg_phi_final, avg_theta_final] = average_angles( partangleslist, classdoc, selectdoc=selectdoc, init_angles=[avg_phi_init, avg_theta_init], threshold=outliers, goodpartdoc=goodclassparttemplate.format(classnum), log=log, verbose=verbose) else: [avg_phi_final, avg_theta_final] = [avg_phi_init, avg_theta_init] # Compute re-projection refprjreal = prgl(reconprep, [avg_phi_final, avg_theta_final, 0, 0, 0], interpolation_method=1, return_real=True) # Align to class average classavg = get_im(classavgstack, classnum) # Alignment using self-correlation function if alignopt == 'scf': ang_align2d, sxs, sys, mirrorflag, peak = align2d_scf(classavg, refprjreal, maxshift, maxshift, ou=outerrad) # Weird results elif alignopt == 'align2d': # Set search range currshift = 0 txrng = tyrng = search_range(idim, outerrad, currshift, maxshift) # Perform alignment ang_align2d, sxs, sys, mirrorflag, peak = align2d( classavg, refprjreal, txrng, tyrng, last_ring=outerrad) # Direct3 (angles seemed to be quantized) elif alignopt == 'direct3': [[ang_align2d, sxs, sys, mirrorflag, peak]] = align2d_direct3([classavg], refprjreal, maxshift, maxshift, ou=outerrad) # APSH-like alignment (default) else: [[ang_align2d, sxs, sys, mirrorflag, scale]] = apsh(refprjreal, classavg, outerradius=outerrad, maxshift=maxshift, ringstep=ringstep) outalignlist.append([ang_align2d, sxs, sys, mirrorflag, 1]) msg = "Particle list %s: ang_align2d=%s sx=%s sy=%s mirror=%s\n" % ( classdoc, ang_align2d, sxs, sys, mirrorflag) print_log_msg(msg, log, verbose) # Check for mirroring if mirrorflag == 1: tempeulers = list( compose_transform3(avg_phi_final, avg_theta_final, 0, 0, 0, 0, 1, 0, 180, 0, 0, 0, 0, 1)) combinedparams = list( compose_transform3(tempeulers[0], tempeulers[1], tempeulers[2], tempeulers[3], tempeulers[4], 0, 1, 0, 0, -ang_align2d, 0, 0, 0, 1)) else: combinedparams = list( compose_transform3(avg_phi_final, avg_theta_final, 0, 0, 0, 0, 1, 0, 0, -ang_align2d, 0, 0, 0, 1)) # compose_transform3: returns phi,theta,psi, tx,ty,tz, scale outangleslist.append(combinedparams) # End class-loop write_text_row(outangleslist, outanglesdoc) write_text_row(outalignlist, outaligndoc) print_log_msg( 'Wrote alignment parameters to %s and %s\n' % (outanglesdoc, outaligndoc), log, verbose) del recondata # Clean up
def compare_projs(reconfile, classavgstack, inputanglesdoc, outdir, interpolation_method=1, log=None, verbose=False): """ Make comparison stack between class averages (even-numbered (starts from 0)) and re-projections (odd-numbered). Arguments: reconfile : Input volume from which to generate re-projections classavgstack ; Input image stack inputanglesdoc : Input Euler angles doc outdir ; Output directory interpolation_method : Interpolation method: nearest neighbor (nn, 0), trilinear (1, default), gridding (-1) log : Logger object verbose : (boolean) Whether to write additional information to screen Returns: compstack : Stack of comparisons between input image stack (even-numbered (starts from 0)) and input volume (odd-numbered) """ recondata = EMAN2.EMData(reconfile) nx = recondata.get_xsize() # Resample reference reconprep = prep_vol(recondata, npad=2, interpolation_method=interpolation_method) ccclist = [] # Here you need actual radius to compute proper ccc's, but if you do, you have to deal with translations, PAP mask = model_circle(nx // 2 - 2, nx, nx) mask.write_image(os.path.join(outdir, 'maskalign.hdf')) compstack = os.path.join(outdir, 'comp-proj-reproj.hdf') # Number of images may have changed nimg1 = EMAN2.EMUtil.get_image_count(classavgstack) angleslist = read_text_row(inputanglesdoc) for imgnum in range(nimg1): # Get class average classimg = get_im(classavgstack, imgnum) # Compute re-projection prjimg = prgl(reconprep, angleslist[imgnum], interpolation_method=1, return_real=False) # Calculate 1D power spectra rops_dst = rops_table(classimg * mask) rops_src = rops_table(prjimg) # Set power spectrum of reprojection to the data. # Since data has an envelope, it would make more sense to set data to reconstruction, # but to do it one would have to know the actual resolution of the data. # you can check sxprocess.py --adjpw to see how this is done properly PAP table = [0.0] * len(rops_dst) # initialize table for j in range(len(rops_dst)): table[j] = sqrt(rops_dst[j] / rops_src[j]) prjimg = fft(filt_table( prjimg, table)) # match FFT amplitudes of re-projection and class average cccoeff = ccc(prjimg, classimg, mask) #print imgnum, cccoeff classimg.set_attr_dict({'cross-corr': cccoeff}) prjimg.set_attr_dict({'cross-corr': cccoeff}) montagestack = [] montagestack.append(prjimg) montagestack.append(classimg) comparison_pair = montage2(montagestack, ncol=2, marginwidth=1) comparison_pair.write_image(compstack, imgnum) ccclist.append(cccoeff) del angleslist meanccc = sum(ccclist) / nimg1 print_log_msg("Average CCC is %s\n" % meanccc, log, verbose) nimg2 = EMAN2.EMUtil.get_image_count(compstack) for imgnum in range(nimg2): # xrange will be deprecated in Python3 prjimg = get_im(compstack, imgnum) meanccc1 = prjimg.get_attr_default('mean-cross-corr', -1.0) prjimg.set_attr_dict({'mean-cross-corr': meanccc}) write_header(compstack, prjimg, imgnum) return compstack
def test_(self): testargs_new = [ path.join(ABSOLUTE_BIN_PATH, "localRes.py"), path.join(ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "11_MERIDIEN", "vol_0_unfil_028.hdf"), path.join(ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "11_MERIDIEN", "vol_1_unfil_028.hdf"), path.join(ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "12_POSTREFINER", "vol_adaptive_mask.hdf"), self.out_dir_new, "--out_ang_res", "--apix=1.14" ] testargs_old = [ path.join(ABSOLUTE_OLDBIN_PATH, "sp_process.py"), path.join(ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "11_MERIDIEN", "vol_0_unfil_028.hdf"), path.join(ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "11_MERIDIEN", "vol_1_unfil_028.hdf"), path.join(ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "12_POSTREFINER", "vol_adaptive_mask.hdf"), self.out_dir_old, "--out_ang_res", "--apix=1.14" ] with patch.object(sys, 'argv', testargs_new): fu.main() with patch.object(sys, 'argv', testargs_old): oldfu.main() old_localRes_ang = get_im(path.join(self.out_dir_old, self.fname_ang)) old_localRes = get_im(path.join(self.out_dir_old, self.fname)) new_localRes_ang = get_im(path.join(self.out_dir_new, self.fname_ang)) new_localRes = get_im(path.join(self.out_dir_new, self.fname)) self.assertTrue( allclose(old_localRes_ang.get_3dview(), new_localRes_ang.get_3dview(), atol=0.05)) self.assertTrue( allclose(old_localRes.get_3dview(), new_localRes.get_3dview(), atol=0.05)) self.assertTrue( allclose( new_localRes_ang.get_3dview().flatten().tolist() [4034427:4034527], [ 6.859487056732178, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], atol=0.05)) self.assertTrue( allclose( new_localRes.get_3dview().flatten().tolist()[4034427:4034527], [ 0.1661931872367859, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], atol=0.05))
def test_symmetrize(self): old_output_folder = "3DvariabilitySimmetry_sym_Old" new_output_folder = "3DvariabilitySimmetry_sym_New" remove_dir(new_output_folder) remove_dir(old_output_folder) filename = "sdata" testargs_new = (path.join(ABSOLUTE_BIN_PATH, "sp_3dvariability.py") + " " + "--symmetrize" + " " + "'bdb:" + path.join( ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "06_SUBSTACK_ANO#isac_substack'") + " " + "--output_dir=" + new_output_folder + " " + "--sym=c5") testargs_old = ( path.join(ABSOLUTE_OLDBIN_PATH, "sp_3dvariability.py") + " " + "--symmetrize" + " " + "'bdb:" + path.join(ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "06_SUBSTACK_ANO#isac_substack'") + " " + "--output_dir=" + old_output_folder + " " + "--sym=c5") subprocess.run(args=[testargs_new], shell=True, capture_output=True) subprocess.run(args=[testargs_old], shell=True, capture_output=True) return_old = get_im('bdb:{0}#{1}'.format(old_output_folder, filename)) return_new = get_im('bdb:{0}#{1}'.format(new_output_folder, filename)) self.assertTrue( allclose(return_new.get_2dview(), return_old.get_2dview(), atol=0.1)) self.assertTrue( allclose(return_new.get_2dview().flatten()[0:100], [ -0.38441434502601624, -0.4573197066783905, -0.39960816502571106, -0.10431570559740067, 0.018583765253424644, 0.37694355845451355, 0.4353419840335846, 0.06498070061206818, -0.38467326760292053, -0.7100721001625061, -0.7571740746498108, -0.9328497648239136, -0.8550546169281006, -0.21433517336845398, 0.34148913621902466, 0.30916473269462585, 0.39394184947013855, 0.4447155296802521, -0.032833874225616455, 0.4121330976486206, 0.638403594493866, 0.34945985674858093, 0.2751978039741516, -0.14872148633003235, -0.5307353138923645, -0.6574574112892151, -0.8945914506912231, -1.107301950454712, -1.3676011562347412, -1.2225056886672974, -1.2273787260055542, -0.7121877074241638, 0.06733409315347672, 0.29879996180534363, 0.6046097874641418, 0.496036559343338, 0.7214235663414001, 0.7652679681777954, 0.9319247603416443, 0.11259084939956665, -0.3054805397987366, -0.8183746933937073, -1.4462037086486816, -1.4775571823120117, -1.2116808891296387, -0.911469042301178, -0.9934141039848328, -0.9891195297241211, -1.0073580741882324, -1.234678864479065, -1.4292954206466675, -1.5580313205718994, -1.446936845779419, -1.67134428024292, -2.0199873447418213, -2.0543317794799805, -2.2354137897491455, -1.99867844581604, -1.4405670166015625, -1.7088592052459717, -2.060110569000244, -1.6585056781768799, -1.0386717319488525, -0.4783007502555847, -0.12102964520454407, 0.16874085366725922, -0.12371158599853516, 0.01841016113758087, -0.6442297101020813, -0.6972493529319763, -0.1051267459988594, 0.016293810680508614, -0.10689342767000198, -0.472159206867218, -0.4886413514614105, -0.09828135371208191, -0.7409976720809937, -0.8893253207206726, -1.1477444171905518, -0.35942375659942627, 0.030692437663674355, 0.5380961298942566, 1.06252121925354, 0.6961002349853516, 0.7563707232475281, 1.0197871923446655, 0.9021824598312378, 0.34891727566719055, 0.402149498462677, 0.634938657283783, 0.6044892072677612, 0.24482420086860657, -0.4132026731967926, -0.9945327043533325, -1.260424256324768, -1.6913681030273438, -1.7999876737594604, -1.5891680717468262, -1.3196191787719727, -0.9893324375152588 ], atol=0.1)) remove_dir(new_output_folder) remove_dir(old_output_folder)
def main(): def params_3D_2D_NEW(phi, theta, psi, s2x, s2y, mirror): # the final ali2d parameters already combine shifts operation first and rotation operation second for parameters converted from 3D if mirror: m = 1 alpha, sx, sy, scalen = sp_utilities.compose_transform2( 0, s2x, s2y, 1.0, 540.0 - psi, 0, 0, 1.0) else: m = 0 alpha, sx, sy, scalen = sp_utilities.compose_transform2( 0, s2x, s2y, 1.0, 360.0 - psi, 0, 0, 1.0) return alpha, sx, sy, m progname = optparse.os.path.basename(sys.argv[0]) usage = ( progname + " prj_stack --ave2D= --var2D= --ave3D= --var3D= --img_per_grp= --fl= --aa= --sym=symmetry --CTF" ) parser = optparse.OptionParser(usage, version=sp_global_def.SPARXVERSION) parser.add_option("--output_dir", type="string", default="./", help="Output directory") parser.add_option( "--ave2D", type="string", default=False, help="Write to the disk a stack of 2D averages", ) parser.add_option( "--var2D", type="string", default=False, help="Write to the disk a stack of 2D variances", ) parser.add_option( "--ave3D", type="string", default=False, help="Write to the disk reconstructed 3D average", ) parser.add_option( "--var3D", type="string", default=False, help="Compute 3D variability (time consuming!)", ) parser.add_option( "--img_per_grp", type="int", default=100, help="Number of neighbouring projections.(Default is 100)", ) parser.add_option( "--no_norm", action="store_true", default=False, help="Do not use normalization.(Default is to apply normalization)", ) # parser.add_option("--radius", type="int" , default=-1 , help="radius for 3D variability" ) parser.add_option( "--npad", type="int", default=2, help= "Number of time to pad the original images.(Default is 2 times padding)", ) parser.add_option("--sym", type="string", default="c1", help="Symmetry. (Default is no symmetry)") parser.add_option( "--fl", type="float", default=0.0, help= "Low pass filter cutoff in absolute frequency (0.0 - 0.5) and is applied to decimated images. (Default - no filtration)", ) parser.add_option( "--aa", type="float", default=0.02, help= "Fall off of the filter. Use default value if user has no clue about falloff (Default value is 0.02)", ) parser.add_option( "--CTF", action="store_true", default=False, help="Use CFT correction.(Default is no CTF correction)", ) # parser.add_option("--MPI" , action="store_true", default=False, help="use MPI version") # parser.add_option("--radiuspca", type="int" , default=-1 , help="radius for PCA" ) # parser.add_option("--iter", type="int" , default=40 , help="maximum number of iterations (stop criterion of reconstruction process)" ) # parser.add_option("--abs", type="float" , default=0.0 , help="minimum average absolute change of voxels' values (stop criterion of reconstruction process)" ) # parser.add_option("--squ", type="float" , default=0.0 , help="minimum average squared change of voxels' values (stop criterion of reconstruction process)" ) parser.add_option( "--VAR", action="store_true", default=False, help="Stack of input consists of 2D variances (Default False)", ) parser.add_option( "--decimate", type="float", default=0.25, help="Image decimate rate, a number less than 1. (Default is 0.25)", ) parser.add_option( "--window", type="int", default=0, help= "Target image size relative to original image size. (Default value is zero.)", ) # parser.add_option("--SND", action="store_true", default=False, help="compute squared normalized differences (Default False)") # parser.add_option("--nvec", type="int" , default=0 , help="Number of eigenvectors, (Default = 0 meaning no PCA calculated)") parser.add_option( "--symmetrize", action="store_true", default=False, help="Prepare input stack for handling symmetry (Default False)", ) parser.add_option("--overhead", type="float", default=0.5, help="python overhead per CPU.") (options, args) = parser.parse_args() ##### # from mpi import * # This is code for handling symmetries by the above program. To be incorporated. PAP 01/27/2015 # Set up global variables related to bdb cache if sp_global_def.CACHE_DISABLE: sp_utilities.disable_bdb_cache() # Set up global variables related to ERROR function sp_global_def.BATCH = True # detect if program is running under MPI RUNNING_UNDER_MPI = "OMPI_COMM_WORLD_SIZE" in optparse.os.environ if RUNNING_UNDER_MPI: sp_global_def.MPI = True if options.output_dir == "./": current_output_dir = optparse.os.path.abspath(options.output_dir) else: current_output_dir = options.output_dir if options.symmetrize: if mpi.mpi_comm_size(mpi.MPI_COMM_WORLD) > 1: sp_global_def.ERROR( "Cannot use more than one CPU for symmetry preparation") if not optparse.os.path.exists(current_output_dir): optparse.os.makedirs(current_output_dir) sp_global_def.write_command(current_output_dir) if optparse.os.path.exists( optparse.os.path.join(current_output_dir, "log.txt")): optparse.os.remove( optparse.os.path.join(current_output_dir, "log.txt")) log_main = sp_logger.Logger(sp_logger.BaseLogger_Files()) log_main.prefix = optparse.os.path.join(current_output_dir, "./") instack = args[0] sym = options.sym.lower() if sym == "c1": sp_global_def.ERROR( "There is no need to symmetrize stack for C1 symmetry") line = "" for a in sys.argv: line += " " + a log_main.add(line) if instack[:4] != "bdb:": # if output_dir =="./": stack = "bdb:data" stack = "bdb:" + current_output_dir + "/data" sp_utilities.delete_bdb(stack) junk = sp_utilities.cmdexecute("sp_cpy.py " + instack + " " + stack) else: stack = instack qt = EMAN2_cppwrap.EMUtil.get_all_attributes(stack, "xform.projection") na = len(qt) ts = sp_utilities.get_symt(sym) ks = len(ts) angsa = [None] * na for k in range(ks): # Qfile = "Q%1d"%k # if options.output_dir!="./": Qfile = os.path.join(options.output_dir,"Q%1d"%k) Qfile = optparse.os.path.join(current_output_dir, "Q%1d" % k) # delete_bdb("bdb:Q%1d"%k) sp_utilities.delete_bdb("bdb:" + Qfile) # junk = cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:Q%1d"%k) junk = sp_utilities.cmdexecute("e2bdb.py " + stack + " --makevstack=bdb:" + Qfile) # DB = db_open_dict("bdb:Q%1d"%k) DB = EMAN2db.db_open_dict("bdb:" + Qfile) for i in range(na): ut = qt[i] * ts[k] DB.set_attr(i, "xform.projection", ut) # bt = ut.get_params("spider") # angsa[i] = [round(bt["phi"],3)%360.0, round(bt["theta"],3)%360.0, bt["psi"], -bt["tx"], -bt["ty"]] # write_text_row(angsa, 'ptsma%1d.txt'%k) # junk = cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:Q%1d"%k) # junk = cmdexecute("sxheader.py bdb:Q%1d --params=xform.projection --import=ptsma%1d.txt"%(k,k)) DB.close() # if options.output_dir =="./": delete_bdb("bdb:sdata") sp_utilities.delete_bdb("bdb:" + current_output_dir + "/" + "sdata") # junk = cmdexecute("e2bdb.py . --makevstack=bdb:sdata --filt=Q") sdata = "bdb:" + current_output_dir + "/" + "sdata" sp_global_def.sxprint(sdata) junk = sp_utilities.cmdexecute("e2bdb.py " + current_output_dir + " --makevstack=" + sdata + " --filt=Q") # junk = cmdexecute("ls EMAN2DB/sdata*") # a = get_im("bdb:sdata") a = sp_utilities.get_im(sdata) a.set_attr("variabilitysymmetry", sym) # a.write_image("bdb:sdata") a.write_image(sdata) else: myid = mpi.mpi_comm_rank(mpi.MPI_COMM_WORLD) number_of_proc = mpi.mpi_comm_size(mpi.MPI_COMM_WORLD) main_node = 0 shared_comm = mpi.mpi_comm_split_type(mpi.MPI_COMM_WORLD, mpi.MPI_COMM_TYPE_SHARED, 0, mpi.MPI_INFO_NULL) myid_on_node = mpi.mpi_comm_rank(shared_comm) no_of_processes_per_group = mpi.mpi_comm_size(shared_comm) masters_from_groups_vs_everything_else_comm = mpi.mpi_comm_split( mpi.MPI_COMM_WORLD, main_node == myid_on_node, myid_on_node) color, no_of_groups, balanced_processor_load_on_nodes = sp_utilities.get_colors_and_subsets( main_node, mpi.MPI_COMM_WORLD, myid, shared_comm, myid_on_node, masters_from_groups_vs_everything_else_comm, ) overhead_loading = options.overhead * number_of_proc # memory_per_node = options.memory_per_node # if memory_per_node == -1.: memory_per_node = 2.*no_of_processes_per_group keepgoing = 1 current_window = options.window current_decimate = options.decimate if len(args) == 1: stack = args[0] else: sp_global_def.sxprint("Usage: " + usage) sp_global_def.sxprint("Please run '" + progname + " -h' for detailed options") sp_global_def.ERROR( "Invalid number of parameters used. Please see usage information above." ) return t0 = time.time() # obsolete flags options.MPI = True # options.nvec = 0 options.radiuspca = -1 options.iter = 40 options.abs = 0.0 options.squ = 0.0 if options.fl > 0.0 and options.aa == 0.0: sp_global_def.ERROR( "Fall off has to be given for the low-pass filter", myid=myid) # if options.VAR and options.SND: # ERROR( "Only one of var and SND can be set!",myid=myid ) if options.VAR and (options.ave2D or options.ave3D or options.var2D): sp_global_def.ERROR( "When VAR is set, the program cannot output ave2D, ave3D or var2D", myid=myid, ) # if options.SND and (options.ave2D or options.ave3D): # ERROR( "When SND is set, the program cannot output ave2D or ave3D", myid=myid ) # if options.nvec > 0 : # ERROR( "PCA option not implemented", myid=myid ) # if options.nvec > 0 and options.ave3D == None: # ERROR( "When doing PCA analysis, one must set ave3D", myid=myid ) if current_decimate > 1.0 or current_decimate < 0.0: sp_global_def.ERROR( "Decimate rate should be a value between 0.0 and 1.0", myid=myid) if current_window < 0.0: sp_global_def.ERROR( "Target window size should be always larger than zero", myid=myid) if myid == main_node: img = sp_utilities.get_image(stack, 0) nx = img.get_xsize() ny = img.get_ysize() if min(nx, ny) < current_window: keepgoing = 0 keepgoing = sp_utilities.bcast_number_to_all(keepgoing, main_node, mpi.MPI_COMM_WORLD) if keepgoing == 0: sp_global_def.ERROR( "The target window size cannot be larger than the size of decimated image", myid=myid, ) options.sym = options.sym.lower() # if global_def.CACHE_DISABLE: # from utilities import disable_bdb_cache # disable_bdb_cache() # global_def.BATCH = True if myid == main_node: if not optparse.os.path.exists(current_output_dir): optparse.os.makedirs( current_output_dir ) # Never delete output_dir in the program! img_per_grp = options.img_per_grp # nvec = options.nvec radiuspca = options.radiuspca # if os.path.exists(os.path.join(options.output_dir, "log.txt")): os.remove(os.path.join(options.output_dir, "log.txt")) log_main = sp_logger.Logger(sp_logger.BaseLogger_Files()) log_main.prefix = optparse.os.path.join(current_output_dir, "./") if myid == main_node: line = "" for a in sys.argv: line += " " + a log_main.add(line) log_main.add("-------->>>Settings given by all options<<<-------") log_main.add("Symmetry : %s" % options.sym) log_main.add("Input stack : %s" % stack) log_main.add("Output_dir : %s" % current_output_dir) if options.ave3D: log_main.add("Ave3d : %s" % options.ave3D) if options.var3D: log_main.add("Var3d : %s" % options.var3D) if options.ave2D: log_main.add("Ave2D : %s" % options.ave2D) if options.var2D: log_main.add("Var2D : %s" % options.var2D) if options.VAR: log_main.add("VAR : True") else: log_main.add("VAR : False") if options.CTF: log_main.add("CTF correction : True ") else: log_main.add("CTF correction : False ") log_main.add("Image per group : %5d" % options.img_per_grp) log_main.add("Image decimate rate : %4.3f" % current_decimate) log_main.add("Low pass filter : %4.3f" % options.fl) current_fl = options.fl if current_fl == 0.0: current_fl = 0.5 log_main.add( "Current low pass filter is equivalent to cutoff frequency %4.3f for original image size" % round((current_fl * current_decimate), 3)) log_main.add("Window size : %5d " % current_window) log_main.add("sx3dvariability begins") symbaselen = 0 if myid == main_node: nima = EMAN2_cppwrap.EMUtil.get_image_count(stack) img = sp_utilities.get_image(stack) nx = img.get_xsize() ny = img.get_ysize() nnxo = nx nnyo = ny if options.sym != "c1": imgdata = sp_utilities.get_im(stack) try: i = imgdata.get_attr("variabilitysymmetry").lower() if i != options.sym: sp_global_def.ERROR( "The symmetry provided does not agree with the symmetry of the input stack", myid=myid, ) except: sp_global_def.ERROR( "Input stack is not prepared for symmetry, please follow instructions", myid=myid, ) i = len(sp_utilities.get_symt(options.sym)) if (old_div(nima, i)) * i != nima: sp_global_def.ERROR( "The length of the input stack is incorrect for symmetry processing", myid=myid, ) symbaselen = old_div(nima, i) else: symbaselen = nima else: nima = 0 nx = 0 ny = 0 nnxo = 0 nnyo = 0 nima = sp_utilities.bcast_number_to_all(nima) nx = sp_utilities.bcast_number_to_all(nx) ny = sp_utilities.bcast_number_to_all(ny) nnxo = sp_utilities.bcast_number_to_all(nnxo) nnyo = sp_utilities.bcast_number_to_all(nnyo) if current_window > max(nx, ny): sp_global_def.ERROR( "Window size is larger than the original image size") if current_decimate == 1.0: if current_window != 0: nx = current_window ny = current_window else: if current_window == 0: nx = int(nx * current_decimate + 0.5) ny = int(ny * current_decimate + 0.5) else: nx = int(current_window * current_decimate + 0.5) ny = nx symbaselen = sp_utilities.bcast_number_to_all(symbaselen) # check FFT prime number is_fft_friendly = nx == sp_fundamentals.smallprime(nx) if not is_fft_friendly: if myid == main_node: log_main.add( "The target image size is not a product of small prime numbers" ) log_main.add("Program adjusts the input settings!") ### two cases if current_decimate == 1.0: nx = sp_fundamentals.smallprime(nx) ny = nx current_window = nx # update if myid == main_node: log_main.add("The window size is updated to %d." % current_window) else: if current_window == 0: nx = sp_fundamentals.smallprime( int(nx * current_decimate + 0.5)) current_decimate = old_div(float(nx), nnxo) ny = nx if myid == main_node: log_main.add("The decimate rate is updated to %f." % current_decimate) else: nx = sp_fundamentals.smallprime( int(current_window * current_decimate + 0.5)) ny = nx current_window = int(old_div(nx, current_decimate) + 0.5) if myid == main_node: log_main.add("The window size is updated to %d." % current_window) if myid == main_node: log_main.add("The target image size is %d" % nx) if radiuspca == -1: radiuspca = old_div(nx, 2) - 2 if myid == main_node: log_main.add("%-70s: %d\n" % ("Number of projection", nima)) img_begin, img_end = sp_applications.MPI_start_end( nima, number_of_proc, myid) """Multiline Comment0""" """ Comments from adnan, replace index_of_proj to index_of_particle, index_of_proj was not defined also varList is not defined not made an empty list there """ if options.VAR: # 2D variance images have no shifts varList = [] # varList = EMData.read_images(stack, range(img_begin, img_end)) for index_of_particle in range(img_begin, img_end): image = sp_utilities.get_im(stack, index_of_particle) if current_window > 0: varList.append( sp_fundamentals.fdecimate( sp_fundamentals.window2d(image, current_window, current_window), nx, ny, )) else: varList.append(sp_fundamentals.fdecimate(image, nx, ny)) else: if myid == main_node: t1 = time.time() proj_angles = [] aveList = [] tab = EMAN2_cppwrap.EMUtil.get_all_attributes( stack, "xform.projection") for i in range(nima): t = tab[i].get_params("spider") phi = t["phi"] theta = t["theta"] psi = t["psi"] x = theta if x > 90.0: x = 180.0 - x x = x * 10000 + psi proj_angles.append([x, t["phi"], t["theta"], t["psi"], i]) t2 = time.time() log_main.add( "%-70s: %d\n" % ("Number of neighboring projections", img_per_grp)) log_main.add("...... Finding neighboring projections\n") log_main.add("Number of images per group: %d" % img_per_grp) log_main.add("Now grouping projections") proj_angles.sort() proj_angles_list = numpy.full((nima, 4), 0.0, dtype=numpy.float32) for i in range(nima): proj_angles_list[i][0] = proj_angles[i][1] proj_angles_list[i][1] = proj_angles[i][2] proj_angles_list[i][2] = proj_angles[i][3] proj_angles_list[i][3] = proj_angles[i][4] else: proj_angles_list = 0 proj_angles_list = sp_utilities.wrap_mpi_bcast( proj_angles_list, main_node, mpi.MPI_COMM_WORLD) proj_angles = [] for i in range(nima): proj_angles.append([ proj_angles_list[i][0], proj_angles_list[i][1], proj_angles_list[i][2], int(proj_angles_list[i][3]), ]) del proj_angles_list proj_list, mirror_list = sp_utilities.nearest_proj( proj_angles, img_per_grp, range(img_begin, img_end)) all_proj = [] for im in proj_list: for jm in im: all_proj.append(proj_angles[jm][3]) all_proj = list(set(all_proj)) index = {} for i in range(len(all_proj)): index[all_proj[i]] = i mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if myid == main_node: log_main.add("%-70s: %.2f\n" % ("Finding neighboring projections lasted [s]", time.time() - t2)) log_main.add("%-70s: %d\n" % ("Number of groups processed on the main node", len(proj_list))) log_main.add("Grouping projections took: %12.1f [m]" % (old_div((time.time() - t2), 60.0))) log_main.add("Number of groups on main node: ", len(proj_list)) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if myid == main_node: log_main.add("...... Calculating the stack of 2D variances \n") # Memory estimation. There are two memory consumption peaks # peak 1. Compute ave, var; # peak 2. Var volume reconstruction; # proj_params = [0.0]*(nima*5) aveList = [] varList = [] # if nvec > 0: eigList = [[] for i in range(nvec)] dnumber = len( all_proj) # all neighborhood set for assigned to myid pnumber = len(proj_list) * 2.0 + img_per_grp # aveList and varList tnumber = dnumber + pnumber vol_size2 = old_div(nx**3 * 4.0 * 8, 1.0e9) vol_size1 = old_div(2.0 * nnxo**3 * 4.0 * 8, 1.0e9) proj_size = old_div(nnxo * nnyo * len(proj_list) * 4.0 * 2.0, 1.0e9) # both aveList and varList orig_data_size = old_div(nnxo * nnyo * 4.0 * tnumber, 1.0e9) reduced_data_size = old_div(nx * nx * 4.0 * tnumber, 1.0e9) full_data = numpy.full((number_of_proc, 2), -1.0, dtype=numpy.float16) full_data[myid] = orig_data_size, reduced_data_size if myid != main_node: sp_utilities.wrap_mpi_send(full_data, main_node, mpi.MPI_COMM_WORLD) if myid == main_node: for iproc in range(number_of_proc): if iproc != main_node: dummy = sp_utilities.wrap_mpi_recv( iproc, mpi.MPI_COMM_WORLD) full_data[numpy.where(dummy > -1)] = dummy[numpy.where( dummy > -1)] del dummy mpi.mpi_barrier(mpi.MPI_COMM_WORLD) full_data = sp_utilities.wrap_mpi_bcast(full_data, main_node, mpi.MPI_COMM_WORLD) # find the CPU with heaviest load minindx = numpy.argsort(full_data, 0) heavy_load_myid = minindx[-1][1] total_mem = sum(full_data) if myid == main_node: if current_window == 0: log_main.add( "Nx: current image size = %d. Decimated by %f from %d" % (nx, current_decimate, nnxo)) else: log_main.add( "Nx: current image size = %d. Windowed to %d, and decimated by %f from %d" % (nx, current_window, current_decimate, nnxo)) log_main.add("Nproj: number of particle images.") log_main.add("Navg: number of 2D average images.") log_main.add("Nvar: number of 2D variance images.") log_main.add( "Img_per_grp: user defined image per group for averaging = %d" % img_per_grp) log_main.add( "Overhead: total python overhead memory consumption = %f" % overhead_loading) log_main.add( "Total memory) = 4.0*nx^2*(nproj + navg +nvar+ img_per_grp)/1.0e9 + overhead: %12.3f [GB]" % (total_mem[1] + overhead_loading)) del full_data mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if myid == heavy_load_myid: log_main.add( "Begin reading and preprocessing images on processor. Wait... " ) ttt = time.time() # imgdata = EMData.read_images(stack, all_proj) imgdata = [None for im in range(len(all_proj))] for index_of_proj in range(len(all_proj)): # image = get_im(stack, all_proj[index_of_proj]) if current_window > 0: imgdata[index_of_proj] = sp_fundamentals.fdecimate( sp_fundamentals.window2d( sp_utilities.get_im(stack, all_proj[index_of_proj]), current_window, current_window, ), nx, ny, ) else: imgdata[index_of_proj] = sp_fundamentals.fdecimate( sp_utilities.get_im(stack, all_proj[index_of_proj]), nx, ny) if current_decimate > 0.0 and options.CTF: ctf = imgdata[index_of_proj].get_attr("ctf") ctf.apix = old_div(ctf.apix, current_decimate) imgdata[index_of_proj].set_attr("ctf", ctf) if myid == heavy_load_myid and index_of_proj % 100 == 0: log_main.add( " ...... %6.2f%% " % (old_div(index_of_proj, float(len(all_proj))) * 100.0)) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if myid == heavy_load_myid: log_main.add("All_proj preprocessing cost %7.2f m" % (old_div( (time.time() - ttt), 60.0))) log_main.add("Wait untill reading on all CPUs done...") """Multiline Comment1""" if not options.no_norm: mask = sp_utilities.model_circle(old_div(nx, 2) - 2, nx, nx) if myid == heavy_load_myid: log_main.add("Start computing 2D aveList and varList. Wait...") ttt = time.time() inner = old_div(nx, 2) - 4 outer = inner + 2 xform_proj_for_2D = [None for i in range(len(proj_list))] for i in range(len(proj_list)): ki = proj_angles[proj_list[i][0]][3] if ki >= symbaselen: continue mi = index[ki] dpar = EMAN2_cppwrap.Util.get_transform_params( imgdata[mi], "xform.projection", "spider") phiM, thetaM, psiM, s2xM, s2yM = ( dpar["phi"], dpar["theta"], dpar["psi"], -dpar["tx"] * current_decimate, -dpar["ty"] * current_decimate, ) grp_imgdata = [] for j in range(img_per_grp): mj = index[proj_angles[proj_list[i][j]][3]] cpar = EMAN2_cppwrap.Util.get_transform_params( imgdata[mj], "xform.projection", "spider") alpha, sx, sy, mirror = params_3D_2D_NEW( cpar["phi"], cpar["theta"], cpar["psi"], -cpar["tx"] * current_decimate, -cpar["ty"] * current_decimate, mirror_list[i][j], ) if thetaM <= 90: if mirror == 0: alpha, sx, sy, scale = sp_utilities.compose_transform2( alpha, sx, sy, 1.0, phiM - cpar["phi"], 0.0, 0.0, 1.0) else: alpha, sx, sy, scale = sp_utilities.compose_transform2( alpha, sx, sy, 1.0, 180 - (phiM - cpar["phi"]), 0.0, 0.0, 1.0, ) else: if mirror == 0: alpha, sx, sy, scale = sp_utilities.compose_transform2( alpha, sx, sy, 1.0, -(phiM - cpar["phi"]), 0.0, 0.0, 1.0) else: alpha, sx, sy, scale = sp_utilities.compose_transform2( alpha, sx, sy, 1.0, -(180 - (phiM - cpar["phi"])), 0.0, 0.0, 1.0, ) imgdata[mj].set_attr( "xform.align2d", EMAN2_cppwrap.Transform({ "type": "2D", "alpha": alpha, "tx": sx, "ty": sy, "mirror": mirror, "scale": 1.0, }), ) grp_imgdata.append(imgdata[mj]) if not options.no_norm: for k in range(img_per_grp): ave, std, minn, maxx = EMAN2_cppwrap.Util.infomask( grp_imgdata[k], mask, False) grp_imgdata[k] -= ave grp_imgdata[k] = old_div(grp_imgdata[k], std) if options.fl > 0.0: for k in range(img_per_grp): grp_imgdata[k] = sp_filter.filt_tanl( grp_imgdata[k], options.fl, options.aa) # Because of background issues, only linear option works. if options.CTF: ave, var = sp_statistics.aves_wiener( grp_imgdata, SNR=1.0e5, interpolation_method="linear") else: ave, var = sp_statistics.ave_var(grp_imgdata) # Switch to std dev # threshold is not really needed,it is just in case due to numerical accuracy something turns out negative. var = sp_morphology.square_root(sp_morphology.threshold(var)) sp_utilities.set_params_proj(ave, [phiM, thetaM, 0.0, 0.0, 0.0]) sp_utilities.set_params_proj(var, [phiM, thetaM, 0.0, 0.0, 0.0]) aveList.append(ave) varList.append(var) xform_proj_for_2D[i] = [phiM, thetaM, 0.0, 0.0, 0.0] """Multiline Comment2""" if (myid == heavy_load_myid) and (i % 100 == 0): log_main.add(" ......%6.2f%% " % (old_div(i, float(len(proj_list))) * 100.0)) del imgdata, grp_imgdata, cpar, dpar, all_proj, proj_angles, index if not options.no_norm: del mask if myid == main_node: del tab # At this point, all averages and variances are computed mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if myid == heavy_load_myid: log_main.add("Computing aveList and varList took %12.1f [m]" % (old_div((time.time() - ttt), 60.0))) xform_proj_for_2D = sp_utilities.wrap_mpi_gatherv( xform_proj_for_2D, main_node, mpi.MPI_COMM_WORLD) if myid == main_node: sp_utilities.write_text_row( [str(entry) for entry in xform_proj_for_2D], optparse.os.path.join(current_output_dir, "params.txt"), ) del xform_proj_for_2D mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if options.ave2D: if myid == main_node: log_main.add("Compute ave2D ... ") km = 0 for i in range(number_of_proc): if i == main_node: for im in range(len(aveList)): aveList[im].write_image( optparse.os.path.join( current_output_dir, options.ave2D), km, ) km += 1 else: nl = mpi.mpi_recv( 1, mpi.MPI_INT, i, sp_global_def.SPARX_MPI_TAG_UNIVERSAL, mpi.MPI_COMM_WORLD, ) nl = int(nl[0]) for im in range(nl): ave = sp_utilities.recv_EMData( i, im + i + 70000) """Multiline Comment3""" tmpvol = sp_fundamentals.fpol(ave, nx, nx, 1) tmpvol.write_image( optparse.os.path.join( current_output_dir, options.ave2D), km, ) km += 1 else: mpi.mpi_send( len(aveList), 1, mpi.MPI_INT, main_node, sp_global_def.SPARX_MPI_TAG_UNIVERSAL, mpi.MPI_COMM_WORLD, ) for im in range(len(aveList)): sp_utilities.send_EMData(aveList[im], main_node, im + myid + 70000) """Multiline Comment4""" if myid == main_node: sp_applications.header( optparse.os.path.join(current_output_dir, options.ave2D), params="xform.projection", fimport=optparse.os.path.join(current_output_dir, "params.txt"), ) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if options.ave3D: t5 = time.time() if myid == main_node: log_main.add("Reconstruct ave3D ... ") ave3D = sp_reconstruction.recons3d_4nn_MPI( myid, aveList, symmetry=options.sym, npad=options.npad) sp_utilities.bcast_EMData_to_all(ave3D, myid) if myid == main_node: if current_decimate != 1.0: ave3D = sp_fundamentals.resample( ave3D, old_div(1.0, current_decimate)) ave3D = sp_fundamentals.fpol( ave3D, nnxo, nnxo, nnxo) # always to the orignal image size sp_utilities.set_pixel_size(ave3D, 1.0) ave3D.write_image( optparse.os.path.join(current_output_dir, options.ave3D)) log_main.add("Ave3D reconstruction took %12.1f [m]" % (old_div((time.time() - t5), 60.0))) log_main.add("%-70s: %s\n" % ("The reconstructed ave3D is saved as ", options.ave3D)) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) del ave, var, proj_list, stack, alpha, sx, sy, mirror, aveList """Multiline Comment5""" if options.ave3D: del ave3D if options.var2D: if myid == main_node: log_main.add("Compute var2D...") km = 0 for i in range(number_of_proc): if i == main_node: for im in range(len(varList)): tmpvol = sp_fundamentals.fpol( varList[im], nx, nx, 1) tmpvol.write_image( optparse.os.path.join( current_output_dir, options.var2D), km, ) km += 1 else: nl = mpi.mpi_recv( 1, mpi.MPI_INT, i, sp_global_def.SPARX_MPI_TAG_UNIVERSAL, mpi.MPI_COMM_WORLD, ) nl = int(nl[0]) for im in range(nl): ave = sp_utilities.recv_EMData( i, im + i + 70000) tmpvol = sp_fundamentals.fpol(ave, nx, nx, 1) tmpvol.write_image( optparse.os.path.join( current_output_dir, options.var2D), km, ) km += 1 else: mpi.mpi_send( len(varList), 1, mpi.MPI_INT, main_node, sp_global_def.SPARX_MPI_TAG_UNIVERSAL, mpi.MPI_COMM_WORLD, ) for im in range(len(varList)): sp_utilities.send_EMData( varList[im], main_node, im + myid + 70000) # What with the attributes?? mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if myid == main_node: sp_applications.header( optparse.os.path.join(current_output_dir, options.var2D), params="xform.projection", fimport=optparse.os.path.join(current_output_dir, "params.txt"), ) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if options.var3D: if myid == main_node: log_main.add("Reconstruct var3D ...") t6 = time.time() # radiusvar = options.radius # if( radiusvar < 0 ): radiusvar = nx//2 -3 res = sp_reconstruction.recons3d_4nn_MPI(myid, varList, symmetry=options.sym, npad=options.npad) # res = recons3d_em_MPI(varList, vol_stack, options.iter, radiusvar, options.abs, True, options.sym, options.squ) if myid == main_node: if current_decimate != 1.0: res = sp_fundamentals.resample( res, old_div(1.0, current_decimate)) res = sp_fundamentals.fpol(res, nnxo, nnxo, nnxo) sp_utilities.set_pixel_size(res, 1.0) res.write_image(os.path.join(current_output_dir, options.var3D)) log_main.add( "%-70s: %s\n" % ("The reconstructed var3D is saved as ", options.var3D)) log_main.add("Var3D reconstruction took %f12.1 [m]" % (old_div( (time.time() - t6), 60.0))) log_main.add("Total computation time %f12.1 [m]" % (old_div( (time.time() - t0), 60.0))) log_main.add("sx3dvariability finishes") if RUNNING_UNDER_MPI: sp_global_def.MPI = False sp_global_def.BATCH = False
def main(): arglist = [] for arg in sys.argv: arglist.append(arg) progname = optparse.os.path.basename(arglist[0]) usage = progname + """ inputvolume locresvolume maskfile outputfile --radius --falloff --MPI Locally filer a volume based on local resolution volume (sxlocres.py) within area outlined by the maskfile """ parser = optparse.OptionParser(usage, version=sp_global_def.SPARXVERSION) parser.add_option( "--radius", type="int", default=-1, help= "if there is no maskfile, sphere with r=radius will be used, by default the radius is nx/2-1" ) parser.add_option("--falloff", type="float", default=0.1, help="falloff of tanl filter (default 0.1)") parser.add_option("--MPI", action="store_true", default=False, help="use MPI version") (options, args) = parser.parse_args(arglist[1:]) if len(args) < 3 or len(args) > 4: sp_global_def.sxprint("See usage " + usage) sp_global_def.ERROR( "Wrong number of parameters. Please see usage information above.") return if sp_global_def.CACHE_DISABLE: pass #IMPORTIMPORTIMPORT from sp_utilities import disable_bdb_cache sp_utilities.disable_bdb_cache() if options.MPI: number_of_proc = mpi.mpi_comm_size(mpi.MPI_COMM_WORLD) myid = mpi.mpi_comm_rank(mpi.MPI_COMM_WORLD) main_node = 0 if (myid == main_node): #print sys.argv vi = sp_utilities.get_im(sys.argv[1]) ui = sp_utilities.get_im(sys.argv[2]) #print Util.infomask(ui, None, True) radius = options.radius nx = vi.get_xsize() ny = vi.get_ysize() nz = vi.get_zsize() dis = [nx, ny, nz] else: falloff = 0.0 radius = 0 dis = [0, 0, 0] vi = None ui = None dis = sp_utilities.bcast_list_to_all(dis, myid, source_node=main_node) if (myid != main_node): nx = int(dis[0]) ny = int(dis[1]) nz = int(dis[2]) radius = sp_utilities.bcast_number_to_all(radius, main_node) if len(args) == 3: if (radius == -1): radius = min(nx, ny, nz) // 2 - 1 m = sp_utilities.model_circle(radius, nx, ny, nz) outvol = args[2] elif len(args) == 4: if (myid == main_node): m = sp_morphology.binarize(sp_utilities.get_im(args[2]), 0.5) else: m = sp_utilities.model_blank(nx, ny, nz) outvol = args[3] sp_utilities.bcast_EMData_to_all(m, myid, main_node) pass #IMPORTIMPORTIMPORT from sp_filter import filterlocal filteredvol = sp_filter.filterlocal(ui, vi, m, options.falloff, myid, main_node, number_of_proc) if (myid == 0): filteredvol.write_image(outvol) else: vi = sp_utilities.get_im(args[0]) ui = sp_utilities.get_im( args[1] ) # resolution volume, values are assumed to be from 0 to 0.5 nn = vi.get_xsize() falloff = options.falloff if len(args) == 3: radius = options.radius if (radius == -1): radius = nn // 2 - 1 m = sp_utilities.model_circle(radius, nn, nn, nn) outvol = args[2] elif len(args) == 4: m = sp_morphology.binarize(sp_utilities.get_im(args[2]), 0.5) outvol = args[3] sp_fundamentals.fftip(vi) # this is the volume to be filtered # Round all resolution numbers to two digits for x in range(nn): for y in range(nn): for z in range(nn): ui.set_value_at_fast(x, y, z, round(ui.get_value_at(x, y, z), 2)) st = EMAN2_cppwrap.Util.infomask(ui, m, True) filteredvol = sp_utilities.model_blank(nn, nn, nn) cutoff = max(st[2] - 0.01, 0.0) while (cutoff < st[3]): cutoff = round(cutoff + 0.01, 2) pt = EMAN2_cppwrap.Util.infomask( sp_morphology.threshold_outside(ui, cutoff - 0.00501, cutoff + 0.005), m, True) if (pt[0] != 0.0): vovo = sp_fundamentals.fft( sp_filter.filt_tanl(vi, cutoff, falloff)) for x in range(nn): for y in range(nn): for z in range(nn): if (m.get_value_at(x, y, z) > 0.5): if (round(ui.get_value_at(x, y, z), 2) == cutoff): filteredvol.set_value_at_fast( x, y, z, vovo.get_value_at(x, y, z)) sp_global_def.write_command(optparse.os.path.dirname(outvol)) filteredvol.write_image(outvol)
def test_(self): testargs_new = [ path.join(ABSOLUTE_BIN_PATH, "sp_ctf_refine.py"), "manual", "bdb:" + path.join(ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "06_SUBSTACK_ANO#isac_substack"), self.new_output_folder, path.join(ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "12_POSTREFINER", "vol_combined.hdf"), path.join(ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "11_MERIDIEN", "final_params_028.txt") ] print("2nd round") testargs_old = [ path.join(ABSOLUTE_OLDBIN_PATH, "sp_ctf_refine.py"), "manual", "bdb:" + path.join(ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "06_SUBSTACK_ANO#isac_substack"), self.old_output_folder, path.join(ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "12_POSTREFINER", "vol_combined.hdf"), path.join(ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "11_MERIDIEN", "final_params_028.txt") ] with patch.object(sys, 'argv', testargs_new): fu._main_() with patch.object(sys, 'argv', testargs_old): oldfu._main_() fpath_new = 'bdb:{0}#{1}'.format(self.new_output_folder, self.bdb_name) fpath_old = 'bdb:{0}#{1}'.format(self.old_output_folder, self.bdb_name) return_old = get_im(fpath_old) return_new = get_im(fpath_new) self.assertTrue( array_equal(return_new.get_3dview(), return_old.get_3dview())) self.assertTrue( array_equal(return_new.get_3dview().flatten().tolist()[0:100], [ -0.38441434502601624, -0.4573197066783905, -0.39960816502571106, -0.10431570559740067, 0.018583765253424644, 0.37694355845451355, 0.4353419840335846, 0.06498070061206818, -0.38467326760292053, -0.7100721001625061, -0.7571740746498108, -0.9328497648239136, -0.8550546169281006, -0.21433517336845398, 0.34148913621902466, 0.30916473269462585, 0.39394184947013855, 0.4447155296802521, -0.032833874225616455, 0.4121330976486206, 0.638403594493866, 0.34945985674858093, 0.2751978039741516, -0.14872148633003235, -0.5307353138923645, -0.6574574112892151, -0.8945914506912231, -1.107301950454712, -1.3676011562347412, -1.2225056886672974, -1.2273787260055542, -0.7121877074241638, 0.06733409315347672, 0.29879996180534363, 0.6046097874641418, 0.496036559343338, 0.7214235663414001, 0.7652679681777954, 0.9319247603416443, 0.11259084939956665, -0.3054805397987366, -0.8183746933937073, -1.4462037086486816, -1.4775571823120117, -1.2116808891296387, -0.911469042301178, -0.9934141039848328, -0.9891195297241211, -1.0073580741882324, -1.234678864479065, -1.4292954206466675, -1.5580313205718994, -1.446936845779419, -1.67134428024292, -2.0199873447418213, -2.0543317794799805, -2.2354137897491455, -1.99867844581604, -1.4405670166015625, -1.7088592052459717, -2.060110569000244, -1.6585056781768799, -1.0386717319488525, -0.4783007502555847, -0.12102964520454407, 0.16874085366725922, -0.12371158599853516, 0.01841016113758087, -0.6442297101020813, -0.6972493529319763, -0.1051267459988594, 0.016293810680508614, -0.10689342767000198, -0.472159206867218, -0.4886413514614105, -0.09828135371208191, -0.7409976720809937, -0.8893253207206726, -1.1477444171905518, -0.35942375659942627, 0.030692437663674355, 0.5380961298942566, 1.06252121925354, 0.6961002349853516, 0.7563707232475281, 1.0197871923446655, 0.9021824598312378, 0.34891727566719055, 0.402149498462677, 0.634938657283783, 0.6044892072677612, 0.24482420086860657, -0.4132026731967926, -0.9945327043533325, -1.260424256324768, -1.6913681030273438, -1.7999876737594604, -1.5891680717468262, -1.3196191787719727, -0.9893324375152588 ]))
def combine_isac_params(isac_dir, classavgstack, chains_params_file, old_combined_parts, classdoc, combined_params_file, log=False, verbose=False): """ Combines initial and all_params from ISAC. Arguments: isac_dir : ISAC directory classavgstack : Input image stack chains_params_file : Input alignment parameters applied to averages in sp_chains old_combined_parts classdoc combined_params_file : Output combined alignment parameters log : instance of Logger class verbose : (boolean) Whether to write to screen """ from sp_utilities import combine_params2, read_text_row # File-handling init_params_file = os.path.join(isac_dir, "2dalignment", "initial2Dparams.txt") all_params_file = os.path.join(isac_dir, "all_parameters.txt") init_params_list = read_text_row(init_params_file) all_params = read_text_row(all_params_file) isac_shrink_path = os.path.join(isac_dir, "README_shrink_ratio.txt") isac_shrink_file = open(isac_shrink_path, "r") isac_shrink_lines = isac_shrink_file.readlines() isac_shrink_ratio = float(isac_shrink_lines[5]) """ Three cases: 1) Using class_averages.hdf 2) Using ordered_class_averages.hdf, but chains_params.txt doesn't exist 3) Using ordered_class_averages.hdf and chains_params.txt """ msg = "Combining alignment parameters from %s and %s, dividing by %s, and writing to %s" % \ (init_params_file, all_params_file, isac_shrink_ratio, combined_params_file) # Check if using ordered class averages and whether chains_params exists if os.path.basename(classavgstack) == 'ordered_class_averages.hdf': if not os.path.exists(chains_params_file): msg += "WARNING: '%s' does not exist. " % chains_params_file msg += " Using '%s' but alignment parameters correspond to 'class_averages.hdf'.\n" % classavgstack else: msg = "Combining alignment parameters from %s, %s, and %s, dividing by %s, and writing to %s" % \ (init_params_file, all_params_file, chains_params_file, isac_shrink_ratio, combined_params_file) print_log_msg(msg, log, verbose) if os.path.basename( classavgstack) == 'ordered_class_averages.hdf' and os.path.exists( chains_params_file): chains_params_list = read_text_row(chains_params_file) old_combined_list = read_text_row(old_combined_parts) num_classes = EMUtil.get_image_count(classavgstack) tmp_combined = [] # Loop through classes for class_num in range(num_classes): # Extract members image = get_im(classavgstack, class_num) members = sorted(image.get_attr("members")) old_class_list = read_text_row(classdoc.format(class_num)) new_class_list = [] # Loop through particles for idx, im in enumerate(members): tmp_par = combine_params2( init_params_list[im][0], init_params_list[im][1], init_params_list[im][2], init_params_list[im][3], all_params[im][0], all_params[im][1] / isac_shrink_ratio, all_params[im][2] / isac_shrink_ratio, all_params[im][3]) # Combine with class-average parameters P = combine_params2(tmp_par[0], tmp_par[1], tmp_par[2], tmp_par[3], chains_params_list[class_num][2], chains_params_list[class_num][3], chains_params_list[class_num][4], chains_params_list[class_num][5]) tmp_combined.append([im, P[0], P[1], P[2], P[3]]) # Need to update class number in class docs old_part_num = old_class_list[idx] try: new_part_num = old_combined_list.index(old_part_num) except ValueError: print( "Couldn't find particle: class_num %s, old_part_num %s, new_part_num %s" % (class_num, old_part_num[0], new_part_num)) new_class_list.append(new_part_num) # End particle-loop # Overwrite pre-existing class doc write_text_row(new_class_list, classdoc.format(class_num)) # End class-loop # Sort by particle number combined_params = sorted(tmp_combined, key=itemgetter(0)) # Remove first column for row in combined_params: del row[0] # Not applying alignments of ordered_class_averages else: combined_params = [] # Loop through images for im in range(len(all_params)): P = combine_params2( init_params_list[im][0], init_params_list[im][1], init_params_list[im][2], init_params_list[im][3], all_params[im][0], all_params[im][1] / isac_shrink_ratio, all_params[im][2] / isac_shrink_ratio, all_params[im][3]) combined_params.append([P[0], P[1], P[2], P[3], 1.0]) write_text_row(combined_params, combined_params_file) print_log_msg( 'Wrote %s entries to %s\n' % (len(combined_params), combined_params_file), log, verbose) return combined_params
def shiftali_MPI(stack, maskfile=None, maxit=100, CTF=False, snr=1.0, Fourvar=False, search_rng=-1, oneDx=False, search_rng_y=-1): number_of_proc = mpi.mpi_comm_size(mpi.MPI_COMM_WORLD) myid = mpi.mpi_comm_rank(mpi.MPI_COMM_WORLD) main_node = 0 ftp = file_type(stack) if myid == main_node: print_begin_msg("shiftali_MPI") max_iter = int(maxit) if myid == main_node: if ftp == "bdb": from EMAN2db import db_open_dict dummy = db_open_dict(stack, True) nima = EMUtil.get_image_count(stack) else: nima = 0 nima = bcast_number_to_all(nima, source_node=main_node) list_of_particles = list(range(nima)) image_start, image_end = MPI_start_end(nima, number_of_proc, myid) list_of_particles = list_of_particles[image_start:image_end] # read nx and ctf_app (if CTF) and broadcast to all nodes if myid == main_node: ima = EMData() ima.read_image(stack, list_of_particles[0], True) nx = ima.get_xsize() ny = ima.get_ysize() if CTF: ctf_app = ima.get_attr_default('ctf_applied', 2) del ima else: nx = 0 ny = 0 if CTF: ctf_app = 0 nx = bcast_number_to_all(nx, source_node=main_node) ny = bcast_number_to_all(ny, source_node=main_node) if CTF: ctf_app = bcast_number_to_all(ctf_app, source_node=main_node) if ctf_app > 0: ERROR("data cannot be ctf-applied", myid=myid) if maskfile == None: mrad = min(nx, ny) mask = model_circle(mrad // 2 - 2, nx, ny) else: mask = get_im(maskfile) if CTF: from sp_filter import filt_ctf from sp_morphology import ctf_img ctf_abs_sum = EMData(nx, ny, 1, False) ctf_2_sum = EMData(nx, ny, 1, False) else: ctf_2_sum = None from sp_global_def import CACHE_DISABLE if CACHE_DISABLE: data = EMData.read_images(stack, list_of_particles) else: for i in range(number_of_proc): if myid == i: data = EMData.read_images(stack, list_of_particles) if ftp == "bdb": mpi.mpi_barrier(mpi.MPI_COMM_WORLD) for im in range(len(data)): data[im].set_attr('ID', list_of_particles[im]) st = Util.infomask(data[im], mask, False) data[im] -= st[0] if CTF: ctf_params = data[im].get_attr("ctf") ctfimg = ctf_img(nx, ctf_params, ny=ny) Util.add_img2(ctf_2_sum, ctfimg) Util.add_img_abs(ctf_abs_sum, ctfimg) if CTF: reduce_EMData_to_root(ctf_2_sum, myid, main_node) reduce_EMData_to_root(ctf_abs_sum, myid, main_node) else: ctf_2_sum = None if CTF: if myid != main_node: del ctf_2_sum del ctf_abs_sum else: temp = EMData(nx, ny, 1, False) for i in range(0, nx, 2): for j in range(ny): temp.set_value_at(i, j, snr) Util.add_img(ctf_2_sum, temp) del temp total_iter = 0 # apply initial xform.align2d parameters stored in header init_params = [] for im in range(len(data)): t = data[im].get_attr('xform.align2d') init_params.append(t) p = t.get_params("2d") data[im] = rot_shift2D(data[im], p['alpha'], sx=p['tx'], sy=p['ty'], mirror=p['mirror'], scale=p['scale']) # fourier transform all images, and apply ctf if CTF for im in range(len(data)): if CTF: ctf_params = data[im].get_attr("ctf") data[im] = filt_ctf(fft(data[im]), ctf_params) else: data[im] = fft(data[im]) sx_sum = 0 sy_sum = 0 sx_sum_total = 0 sy_sum_total = 0 shift_x = [0.0] * len(data) shift_y = [0.0] * len(data) ishift_x = [0.0] * len(data) ishift_y = [0.0] * len(data) for Iter in range(max_iter): if myid == main_node: start_time = time() print_msg("Iteration #%4d\n" % (total_iter)) total_iter += 1 avg = EMData(nx, ny, 1, False) for im in data: Util.add_img(avg, im) reduce_EMData_to_root(avg, myid, main_node) if myid == main_node: if CTF: tavg = Util.divn_filter(avg, ctf_2_sum) else: tavg = Util.mult_scalar(avg, 1.0 / float(nima)) else: tavg = EMData(nx, ny, 1, False) if Fourvar: bcast_EMData_to_all(tavg, myid, main_node) vav, rvar = varf2d_MPI(myid, data, tavg, mask, "a", CTF) if myid == main_node: if Fourvar: tavg = fft(Util.divn_img(fft(tavg), vav)) vav_r = Util.pack_complex_to_real(vav) # normalize and mask tavg in real space tavg = fft(tavg) stat = Util.infomask(tavg, mask, False) tavg -= stat[0] Util.mul_img(tavg, mask) # For testing purposes: shift tavg to some random place and see if the centering is still correct #tavg = rot_shift3D(tavg,sx=3,sy=-4) tavg = fft(tavg) if Fourvar: del vav bcast_EMData_to_all(tavg, myid, main_node) sx_sum = 0 sy_sum = 0 if search_rng > 0: nwx = 2 * search_rng + 1 else: nwx = nx if search_rng_y > 0: nwy = 2 * search_rng_y + 1 else: nwy = ny not_zero = 0 for im in range(len(data)): if oneDx: ctx = Util.window(ccf(data[im], tavg), nwx, 1) p1 = peak_search(ctx) p1_x = -int(p1[0][3]) ishift_x[im] = p1_x sx_sum += p1_x else: p1 = peak_search(Util.window(ccf(data[im], tavg), nwx, nwy)) p1_x = -int(p1[0][4]) p1_y = -int(p1[0][5]) ishift_x[im] = p1_x ishift_y[im] = p1_y sx_sum += p1_x sy_sum += p1_y if not_zero == 0: if (not (ishift_x[im] == 0.0)) or (not (ishift_y[im] == 0.0)): not_zero = 1 sx_sum = mpi.mpi_reduce(sx_sum, 1, mpi.MPI_INT, mpi.MPI_SUM, main_node, mpi.MPI_COMM_WORLD) if not oneDx: sy_sum = mpi.mpi_reduce(sy_sum, 1, mpi.MPI_INT, mpi.MPI_SUM, main_node, mpi.MPI_COMM_WORLD) if myid == main_node: sx_sum_total = int(sx_sum[0]) if not oneDx: sy_sum_total = int(sy_sum[0]) else: sx_sum_total = 0 sy_sum_total = 0 sx_sum_total = bcast_number_to_all(sx_sum_total, source_node=main_node) if not oneDx: sy_sum_total = bcast_number_to_all(sy_sum_total, source_node=main_node) sx_ave = round(float(sx_sum_total) / nima) sy_ave = round(float(sy_sum_total) / nima) for im in range(len(data)): p1_x = ishift_x[im] - sx_ave p1_y = ishift_y[im] - sy_ave params2 = { "filter_type": Processor.fourier_filter_types.SHIFT, "x_shift": p1_x, "y_shift": p1_y, "z_shift": 0.0 } data[im] = Processor.EMFourierFilter(data[im], params2) shift_x[im] += p1_x shift_y[im] += p1_y # stop if all shifts are zero not_zero = mpi.mpi_reduce(not_zero, 1, mpi.MPI_INT, mpi.MPI_SUM, main_node, mpi.MPI_COMM_WORLD) if myid == main_node: not_zero_all = int(not_zero[0]) else: not_zero_all = 0 not_zero_all = bcast_number_to_all(not_zero_all, source_node=main_node) if myid == main_node: print_msg("Time of iteration = %12.2f\n" % (time() - start_time)) start_time = time() if not_zero_all == 0: break #for im in xrange(len(data)): data[im] = fft(data[im]) This should not be required as only header information is used # combine shifts found with the original parameters for im in range(len(data)): t0 = init_params[im] t1 = Transform() t1.set_params({ "type": "2D", "alpha": 0, "scale": t0.get_scale(), "mirror": 0, "tx": shift_x[im], "ty": shift_y[im] }) # combine t0 and t1 tt = t1 * t0 data[im].set_attr("xform.align2d", tt) # write out headers and STOP, under MPI writing has to be done sequentially mpi.mpi_barrier(mpi.MPI_COMM_WORLD) par_str = ["xform.align2d", "ID"] if myid == main_node: from sp_utilities import file_type if (file_type(stack) == "bdb"): from sp_utilities import recv_attr_dict_bdb recv_attr_dict_bdb(main_node, stack, data, par_str, image_start, image_end, number_of_proc) else: from sp_utilities import recv_attr_dict recv_attr_dict(main_node, stack, data, par_str, image_start, image_end, number_of_proc) else: send_attr_dict(main_node, data, par_str, image_start, image_end) if myid == main_node: print_end_msg("shiftali_MPI")
def main(): progname = os.path.basename(sys.argv[0]) usage = progname + " prj_stack .. average eigvol output_factcoords --rad=radius --neigvol=number_of_eigvol --CTF" parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--rad", type="int", default=-1, help="radius of mask") parser.add_option("--neigvol", type="int", default=-1, help="number of eigvenvectors to use (default all)") parser.add_option( "--fl", type="float", default=0.0, help="cut-off frequency of hyperbolic tangent low-pass Fourier filter") parser.add_option( "--aa", type="float", default=0.0, help="fall-off of hyperbolic tangent low-pass Fourier filter") parser.add_option("--CTF", action="store_true", default=False, help="Use CTF") parser.add_option("--MPI", action="store_true", help="use MPI") (options, args) = parser.parse_args() if (len(args) < 4): sxprint("Usage: " + usage) sxprint("Please run \'" + progname + " -h\' for detailed options") ERROR( "Invalid number of parameters used. Please see usage information above." ) return else: stacks = args[0:-3] avgvol = args[-3] eigvol = args[-2] output = args[-1] if options.rad < 0: ERROR("Mask radius is not given") return if sp_global_def.CACHE_DISABLE: from sp_utilities import disable_bdb_cache disable_bdb_cache() from sp_utilities import get_im sp_global_def.BATCH = True if (get_im(stacks[0]).get_zsize() == 1 and get_im(eigvol).get_zsize() > 1): from sp_applications import factcoords_prj factcoords_prj(stacks, avgvol, eigvol, output, options.rad, options.neigvol, options.fl, options.aa, options.CTF, options.MPI) else: from sp_applications import factcoords_vol factcoords_vol(stacks, avgvol, eigvol, output, options.rad, options.neigvol, options.fl, options.aa, options.MPI) sp_global_def.BATCH = False
def main(): from sp_logger import Logger, BaseLogger_Files arglist = [] i = 0 while (i < len(sys.argv)): if sys.argv[i] == '-p4pg': i = i + 2 elif sys.argv[i] == '-p4wd': i = i + 2 else: arglist.append(sys.argv[i]) i = i + 1 progname = os.path.basename(arglist[0]) usage = progname + " stack outdir <mask> --focus=3Dmask --radius=outer_radius --delta=angular_step" +\ "--an=angular_neighborhood --maxit=max_iter --CTF --sym=c1 --function=user_function --independent=indenpendent_runs --number_of_images_per_group=number_of_images_per_group --low_pass_filter=.25 --seed=random_seed" parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--focus", type="string", default='', help="bineary 3D mask for focused clustering ") parser.add_option( "--ir", type="int", default=1, help="inner radius for rotational correlation > 0 (set to 1)") parser.add_option( "--radius", type="int", default=-1, help= "particle radius in pixel for rotational correlation <nx-1 (set to the radius of the particle)" ) parser.add_option("--maxit", type="int", default=25, help="maximum number of iteration") parser.add_option( "--rs", type="int", default=1, help="step between rings in rotational correlation >0 (set to 1)") parser.add_option( "--xr", type="string", default='1', help="range for translation search in x direction, search is +/-xr ") parser.add_option( "--yr", type="string", default='-1', help= "range for translation search in y direction, search is +/-yr (default = same as xr)" ) parser.add_option( "--ts", type="string", default='0.25', help= "step size of the translation search in both directions direction, search is -xr, -xr+ts, 0, xr-ts, xr " ) parser.add_option("--delta", type="string", default='2', help="angular step of reference projections") parser.add_option("--an", type="string", default='-1', help="angular neighborhood for local searches") parser.add_option( "--center", type="int", default=0, help= "0 - if you do not want the volume to be centered, 1 - center the volume using cog (default=0)" ) parser.add_option( "--nassign", type="int", default=1, help= "number of reassignment iterations performed for each angular step (set to 3) " ) parser.add_option( "--nrefine", type="int", default=0, help= "number of alignment iterations performed for each angular step (set to 0)" ) parser.add_option("--CTF", action="store_true", default=False, help="do CTF correction during clustring") parser.add_option( "--stoprnct", type="float", default=3.0, help="Minimum percentage of assignment change to stop the program") parser.add_option("--sym", type="string", default='c1', help="symmetry of the structure ") parser.add_option("--function", type="string", default='do_volume_mrk05', help="name of the reference preparation function") parser.add_option("--independent", type="int", default=3, help="number of independent run") parser.add_option("--number_of_images_per_group", type="int", default=1000, help="number of groups") parser.add_option( "--low_pass_filter", type="float", default=-1.0, help= "absolute frequency of low-pass filter for 3d sorting on the original image size" ) parser.add_option("--nxinit", type="int", default=64, help="initial image size for sorting") parser.add_option("--unaccounted", action="store_true", default=False, help="reconstruct the unaccounted images") parser.add_option( "--seed", type="int", default=-1, help="random seed for create initial random assignment for EQ Kmeans") parser.add_option("--smallest_group", type="int", default=500, help="minimum members for identified group") parser.add_option("--sausage", action="store_true", default=False, help="way of filter volume") parser.add_option("--chunk0", type="string", default='', help="chunk0 for computing margin of error") parser.add_option("--chunk1", type="string", default='', help="chunk1 for computing margin of error") parser.add_option( "--PWadjustment", type="string", default='', help= "1-D power spectrum of PDB file used for EM volume power spectrum correction" ) parser.add_option( "--protein_shape", type="string", default='g', help= "protein shape. It defines protein preferred orientation angles. Currently it has g and f two types " ) parser.add_option( "--upscale", type="float", default=0.5, help=" scaling parameter to adjust the power spectrum of EM volumes") parser.add_option("--wn", type="int", default=0, help="optimal window size for data processing") parser.add_option( "--interpolation", type="string", default="4nn", help="3-d reconstruction interpolation method, two options trl and 4nn" ) (options, args) = parser.parse_args(arglist[1:]) if len(args) < 1 or len(args) > 4: sxprint("Usage: " + usage) sxprint("Please run \'" + progname + " -h\' for detailed options") ERROR( "Invalid number of parameters used. Please see usage information above." ) return else: if len(args) > 2: mask_file = args[2] else: mask_file = None orgstack = args[0] masterdir = args[1] sp_global_def.BATCH = True #---initialize MPI related variables nproc = mpi.mpi_comm_size(mpi.MPI_COMM_WORLD) myid = mpi.mpi_comm_rank(mpi.MPI_COMM_WORLD) mpi_comm = mpi.MPI_COMM_WORLD main_node = 0 # import some utilities from sp_utilities import get_im, bcast_number_to_all, cmdexecute, write_text_file, read_text_file, wrap_mpi_bcast, get_params_proj, write_text_row from sp_applications import recons3d_n_MPI, mref_ali3d_MPI, Kmref_ali3d_MPI from sp_statistics import k_means_match_clusters_asg_new, k_means_stab_bbenum from sp_applications import mref_ali3d_EQ_Kmeans, ali3d_mref_Kmeans_MPI # Create the main log file from sp_logger import Logger, BaseLogger_Files if myid == main_node: log_main = Logger(BaseLogger_Files()) log_main.prefix = masterdir + "/" else: log_main = None #--- fill input parameters into dictionary named after Constants Constants = {} Constants["stack"] = args[0] Constants["masterdir"] = masterdir Constants["mask3D"] = mask_file Constants["focus3Dmask"] = options.focus Constants["indep_runs"] = options.independent Constants["stoprnct"] = options.stoprnct Constants[ "number_of_images_per_group"] = options.number_of_images_per_group Constants["CTF"] = options.CTF Constants["maxit"] = options.maxit Constants["ir"] = options.ir Constants["radius"] = options.radius Constants["nassign"] = options.nassign Constants["rs"] = options.rs Constants["xr"] = options.xr Constants["yr"] = options.yr Constants["ts"] = options.ts Constants["delta"] = options.delta Constants["an"] = options.an Constants["sym"] = options.sym Constants["center"] = options.center Constants["nrefine"] = options.nrefine #Constants["fourvar"] = options.fourvar Constants["user_func"] = options.function Constants[ "low_pass_filter"] = options.low_pass_filter # enforced low_pass_filter #Constants["debug"] = options.debug Constants["main_log_prefix"] = args[1] #Constants["importali3d"] = options.importali3d Constants["myid"] = myid Constants["main_node"] = main_node Constants["nproc"] = nproc Constants["log_main"] = log_main Constants["nxinit"] = options.nxinit Constants["unaccounted"] = options.unaccounted Constants["seed"] = options.seed Constants["smallest_group"] = options.smallest_group Constants["sausage"] = options.sausage Constants["chunk0"] = options.chunk0 Constants["chunk1"] = options.chunk1 Constants["PWadjustment"] = options.PWadjustment Constants["upscale"] = options.upscale Constants["wn"] = options.wn Constants["3d-interpolation"] = options.interpolation Constants["protein_shape"] = options.protein_shape # ----------------------------------------------------- # # Create and initialize Tracker dictionary with input options Tracker = {} Tracker["constants"] = Constants Tracker["maxit"] = Tracker["constants"]["maxit"] Tracker["radius"] = Tracker["constants"]["radius"] #Tracker["xr"] = "" #Tracker["yr"] = "-1" # Do not change! #Tracker["ts"] = 1 #Tracker["an"] = "-1" #Tracker["delta"] = "2.0" #Tracker["zoom"] = True #Tracker["nsoft"] = 0 #Tracker["local"] = False #Tracker["PWadjustment"] = Tracker["constants"]["PWadjustment"] Tracker["upscale"] = Tracker["constants"]["upscale"] #Tracker["upscale"] = 0.5 Tracker[ "applyctf"] = False # Should the data be premultiplied by the CTF. Set to False for local continuous. #Tracker["refvol"] = None Tracker["nxinit"] = Tracker["constants"]["nxinit"] #Tracker["nxstep"] = 32 Tracker["icurrentres"] = -1 #Tracker["ireachedres"] = -1 #Tracker["lowpass"] = 0.4 #Tracker["falloff"] = 0.2 #Tracker["inires"] = options.inires # Now in A, convert to absolute before using Tracker["fuse_freq"] = 50 # Now in A, convert to absolute before using #Tracker["delpreviousmax"] = False #Tracker["anger"] = -1.0 #Tracker["shifter"] = -1.0 #Tracker["saturatecrit"] = 0.95 #Tracker["pixercutoff"] = 2.0 #Tracker["directory"] = "" #Tracker["previousoutputdir"] = "" #Tracker["eliminated-outliers"] = False #Tracker["mainiteration"] = 0 #Tracker["movedback"] = False #Tracker["state"] = Tracker["constants"]["states"][0] #Tracker["global_resolution"] =0.0 Tracker["orgstack"] = orgstack #-------------------------------------------------------------------- # import from utilities from sp_utilities import sample_down_1D_curve, get_initial_ID, remove_small_groups, print_upper_triangular_matrix, print_a_line_with_timestamp from sp_utilities import print_dict, get_resolution_mrk01, partition_to_groups, partition_independent_runs, get_outliers from sp_utilities import merge_groups, save_alist, margin_of_error, get_margin_of_error, do_two_way_comparison, select_two_runs, get_ali3d_params from sp_utilities import counting_projections, unload_dict, load_dict, get_stat_proj, create_random_list, get_number_of_groups, recons_mref from sp_utilities import apply_low_pass_filter, get_groups_from_partition, get_number_of_groups, get_complementary_elements_total, update_full_dict from sp_utilities import count_chunk_members, set_filter_parameters_from_adjusted_fsc, get_two_chunks_from_stack ####------------------------------------------------------------------ # # Get the pixel size; if none, set to 1.0, and the original image size from sp_utilities import get_shrink_data_huang if (myid == main_node): line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" sxprint((line + "Initialization of 3-D sorting")) a = get_im(orgstack) nnxo = a.get_xsize() if (Tracker["nxinit"] > nnxo): sp_global_def.ERROR( "Image size less than minimum permitted $d" % Tracker["nxinit"]) nnxo = -1 else: if Tracker["constants"]["CTF"]: i = a.get_attr('ctf') pixel_size = i.apix fq = pixel_size / Tracker["fuse_freq"] else: pixel_size = 1.0 # No pixel size, fusing computed as 5 Fourier pixels fq = 5.0 / nnxo del a else: nnxo = 0 fq = 0.0 pixel_size = 1.0 nnxo = bcast_number_to_all(nnxo, source_node=main_node) if (nnxo < 0): return pixel_size = bcast_number_to_all(pixel_size, source_node=main_node) fq = bcast_number_to_all(fq, source_node=main_node) if Tracker["constants"]["wn"] == 0: Tracker["constants"]["nnxo"] = nnxo else: Tracker["constants"]["nnxo"] = Tracker["constants"]["wn"] nnxo = Tracker["constants"]["nnxo"] Tracker["constants"]["pixel_size"] = pixel_size Tracker["fuse_freq"] = fq del fq, nnxo, pixel_size if (Tracker["constants"]["radius"] < 1): Tracker["constants"][ "radius"] = Tracker["constants"]["nnxo"] // 2 - 2 elif ((2 * Tracker["constants"]["radius"] + 2) > Tracker["constants"]["nnxo"]): sp_global_def.ERROR("Particle radius set too large!", myid=myid) ####----------------------------------------------------------------------------------------- # Master directory if myid == main_node: if masterdir == "": timestring = strftime("_%d_%b_%Y_%H_%M_%S", localtime()) masterdir = "master_sort3d" + timestring li = len(masterdir) cmd = "{} {}".format("mkdir -p", masterdir) os.system(cmd) else: li = 0 li = mpi.mpi_bcast(li, 1, mpi.MPI_INT, main_node, mpi.MPI_COMM_WORLD)[0] if li > 0: masterdir = mpi.mpi_bcast(masterdir, li, mpi.MPI_CHAR, main_node, mpi.MPI_COMM_WORLD) import string masterdir = string.join(masterdir, "") if myid == main_node: print_dict(Tracker["constants"], "Permanent settings of 3-D sorting program") ######### create a vstack from input stack to the local stack in masterdir # stack name set to default Tracker["constants"]["stack"] = "bdb:" + masterdir + "/rdata" Tracker["constants"]["ali3d"] = os.path.join(masterdir, "ali3d_init.txt") Tracker["constants"]["ctf_params"] = os.path.join( masterdir, "ctf_params.txt") Tracker["constants"]["partstack"] = Tracker["constants"][ "ali3d"] # also serves for refinement if myid == main_node: total_stack = EMUtil.get_image_count(Tracker["orgstack"]) else: total_stack = 0 total_stack = bcast_number_to_all(total_stack, source_node=main_node) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) from time import sleep while not os.path.exists(masterdir): sxprint("Node ", myid, " waiting...") sleep(5) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if myid == main_node: log_main.add("Sphire sort3d ") log_main.add("the sort3d master directory is " + masterdir) ##### ###---------------------------------------------------------------------------------- # Initial data analysis and handle two chunk files from random import shuffle # Compute the resolution #### make chunkdir dictionary for computing margin of error import sp_user_functions user_func = sp_user_functions.factory[Tracker["constants"] ["user_func"]] chunk_dict = {} chunk_list = [] if myid == main_node: chunk_one = read_text_file(Tracker["constants"]["chunk0"]) chunk_two = read_text_file(Tracker["constants"]["chunk1"]) else: chunk_one = 0 chunk_two = 0 chunk_one = wrap_mpi_bcast(chunk_one, main_node) chunk_two = wrap_mpi_bcast(chunk_two, main_node) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) ######################## Read/write bdb: data on main node ############################ if myid == main_node: if (orgstack[:4] == "bdb:"): cmd = "{} {} {}".format( "e2bdb.py", orgstack, "--makevstack=" + Tracker["constants"]["stack"]) else: cmd = "{} {} {}".format("sp_cpy.py", orgstack, Tracker["constants"]["stack"]) junk = cmdexecute(cmd) cmd = "{} {} {}".format( "sp_header.py --params=xform.projection", "--export=" + Tracker["constants"]["ali3d"], orgstack) junk = cmdexecute(cmd) cmd = "{} {} {}".format( "sp_header.py --params=ctf", "--export=" + Tracker["constants"]["ctf_params"], orgstack) junk = cmdexecute(cmd) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) ########----------------------------------------------------------------------------- Tracker["total_stack"] = total_stack Tracker["constants"]["total_stack"] = total_stack Tracker["shrinkage"] = float( Tracker["nxinit"]) / Tracker["constants"]["nnxo"] Tracker[ "radius"] = Tracker["constants"]["radius"] * Tracker["shrinkage"] if Tracker["constants"]["mask3D"]: Tracker["mask3D"] = os.path.join(masterdir, "smask.hdf") else: Tracker["mask3D"] = None if Tracker["constants"]["focus3Dmask"]: Tracker["focus3D"] = os.path.join(masterdir, "sfocus.hdf") else: Tracker["focus3D"] = None if myid == main_node: if Tracker["constants"]["mask3D"]: mask_3D = get_shrink_3dmask(Tracker["nxinit"], Tracker["constants"]["mask3D"]) mask_3D.write_image(Tracker["mask3D"]) if Tracker["constants"]["focus3Dmask"]: mask_3D = get_shrink_3dmask( Tracker["nxinit"], Tracker["constants"]["focus3Dmask"]) st = Util.infomask(mask_3D, None, True) if (st[0] == 0.0): ERROR( "Incorrect focused mask, after binarize all values zero" ) mask_3D.write_image(Tracker["focus3D"]) del mask_3D if Tracker["constants"]["PWadjustment"] != '': PW_dict = {} nxinit_pwsp = sample_down_1D_curve( Tracker["constants"]["nxinit"], Tracker["constants"]["nnxo"], Tracker["constants"]["PWadjustment"]) Tracker["nxinit_PW"] = os.path.join(masterdir, "spwp.txt") if myid == main_node: write_text_file(nxinit_pwsp, Tracker["nxinit_PW"]) PW_dict[Tracker["constants"] ["nnxo"]] = Tracker["constants"]["PWadjustment"] PW_dict[Tracker["constants"]["nxinit"]] = Tracker["nxinit_PW"] Tracker["PW_dict"] = PW_dict mpi.mpi_barrier(mpi.MPI_COMM_WORLD) #-----------------------From two chunks to FSC, and low pass filter-----------------------------------------### for element in chunk_one: chunk_dict[element] = 0 for element in chunk_two: chunk_dict[element] = 1 chunk_list = [chunk_one, chunk_two] Tracker["chunk_dict"] = chunk_dict Tracker["P_chunk0"] = len(chunk_one) / float(total_stack) Tracker["P_chunk1"] = len(chunk_two) / float(total_stack) ### create two volumes to estimate resolution if myid == main_node: for index in range(2): write_text_file( chunk_list[index], os.path.join(masterdir, "chunk%01d.txt" % index)) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) vols = [] for index in range(2): data, old_shifts = get_shrink_data_huang( Tracker, Tracker["constants"]["nxinit"], os.path.join(masterdir, "chunk%01d.txt" % index), Tracker["constants"]["partstack"], myid, main_node, nproc, preshift=True) vol = recons3d_4nn_ctf_MPI(myid=myid, prjlist=data, symmetry=Tracker["constants"]["sym"], finfo=None) if myid == main_node: vol.write_image(os.path.join(masterdir, "vol%d.hdf" % index)) vols.append(vol) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if myid == main_node: low_pass, falloff, currentres = get_resolution_mrk01( vols, Tracker["constants"]["radius"], Tracker["constants"]["nxinit"], masterdir, Tracker["mask3D"]) if low_pass > Tracker["constants"]["low_pass_filter"]: low_pass = Tracker["constants"]["low_pass_filter"] else: low_pass = 0.0 falloff = 0.0 currentres = 0.0 bcast_number_to_all(currentres, source_node=main_node) bcast_number_to_all(low_pass, source_node=main_node) bcast_number_to_all(falloff, source_node=main_node) Tracker["currentres"] = currentres Tracker["falloff"] = falloff if Tracker["constants"]["low_pass_filter"] == -1.0: Tracker["low_pass_filter"] = min( .45, low_pass / Tracker["shrinkage"]) # no better than .45 else: Tracker["low_pass_filter"] = min( .45, Tracker["constants"]["low_pass_filter"] / Tracker["shrinkage"]) Tracker["lowpass"] = Tracker["low_pass_filter"] Tracker["falloff"] = .1 Tracker["global_fsc"] = os.path.join(masterdir, "fsc.txt") ############################################################################################ if myid == main_node: log_main.add("The command-line inputs are as following:") log_main.add( "**********************************************************") for a in sys.argv: if myid == main_node: log_main.add(a) if myid == main_node: log_main.add("number of cpus used in this run is %d" % Tracker["constants"]["nproc"]) log_main.add( "**********************************************************") from sp_filter import filt_tanl ### START 3-D sorting if myid == main_node: log_main.add("----------3-D sorting program------- ") log_main.add( "current resolution %6.3f for images of original size in terms of absolute frequency" % Tracker["currentres"]) log_main.add("equivalent to %f Angstrom resolution" % (Tracker["constants"]["pixel_size"] / Tracker["currentres"] / Tracker["shrinkage"])) log_main.add("the user provided enforced low_pass_filter is %f" % Tracker["constants"]["low_pass_filter"]) #log_main.add("equivalent to %f Angstrom resolution"%(Tracker["constants"]["pixel_size"]/Tracker["constants"]["low_pass_filter"])) for index in range(2): filt_tanl( get_im(os.path.join(masterdir, "vol%01d.hdf" % index)), Tracker["low_pass_filter"], Tracker["falloff"]).write_image( os.path.join(masterdir, "volf%01d.hdf" % index)) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) from sp_utilities import get_input_from_string delta = get_input_from_string(Tracker["constants"]["delta"]) delta = delta[0] from sp_utilities import even_angles n_angles = even_angles(delta, 0, 180) this_ali3d = Tracker["constants"]["ali3d"] sampled = get_stat_proj(Tracker, delta, this_ali3d) if myid == main_node: nc = 0 for a in sampled: if len(sampled[a]) > 0: nc += 1 log_main.add("total sampled direction %10d at angle step %6.3f" % (len(n_angles), delta)) log_main.add( "captured sampled directions %10d percentage covered by data %6.3f" % (nc, float(nc) / len(n_angles) * 100)) number_of_images_per_group = Tracker["constants"][ "number_of_images_per_group"] if myid == main_node: log_main.add("user provided number_of_images_per_group %d" % number_of_images_per_group) Tracker["number_of_images_per_group"] = number_of_images_per_group number_of_groups = get_number_of_groups(total_stack, number_of_images_per_group) Tracker["number_of_groups"] = number_of_groups generation = 0 partition_dict = {} full_dict = {} workdir = os.path.join(masterdir, "generation%03d" % generation) Tracker["this_dir"] = workdir if myid == main_node: log_main.add("---- generation %5d" % generation) log_main.add("number of images per group is set as %d" % number_of_images_per_group) log_main.add("the initial number of groups is %10d " % number_of_groups) cmd = "{} {}".format("mkdir", workdir) os.system(cmd) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) list_to_be_processed = list(range(Tracker["constants"]["total_stack"])) Tracker["this_data_list"] = list_to_be_processed create_random_list(Tracker) ################################# full_dict = {} for iptl in range(Tracker["constants"]["total_stack"]): full_dict[iptl] = iptl Tracker["full_ID_dict"] = full_dict ################################# for indep_run in range(Tracker["constants"]["indep_runs"]): Tracker["this_particle_list"] = Tracker["this_indep_list"][ indep_run] ref_vol = recons_mref(Tracker) if myid == main_node: log_main.add("independent run %10d" % indep_run) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) Tracker["this_data_list"] = list_to_be_processed Tracker["total_stack"] = len(Tracker["this_data_list"]) Tracker["this_particle_text_file"] = os.path.join( workdir, "independent_list_%03d.txt" % indep_run) # for get_shrink_data if myid == main_node: write_text_file(Tracker["this_data_list"], Tracker["this_particle_text_file"]) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) outdir = os.path.join(workdir, "EQ_Kmeans%03d" % indep_run) ref_vol = apply_low_pass_filter(ref_vol, Tracker) mref_ali3d_EQ_Kmeans(ref_vol, outdir, Tracker["this_particle_text_file"], Tracker) partition_dict[indep_run] = Tracker["this_partition"] Tracker["partition_dict"] = partition_dict Tracker["total_stack"] = len(Tracker["this_data_list"]) Tracker["this_total_stack"] = Tracker["total_stack"] ############################### do_two_way_comparison(Tracker) ############################### ref_vol_list = [] from time import sleep number_of_ref_class = [] for igrp in range(len(Tracker["two_way_stable_member"])): Tracker["this_data_list"] = Tracker["two_way_stable_member"][igrp] Tracker["this_data_list_file"] = os.path.join( workdir, "stable_class%d.txt" % igrp) if myid == main_node: write_text_file(Tracker["this_data_list"], Tracker["this_data_list_file"]) data, old_shifts = get_shrink_data_huang( Tracker, Tracker["nxinit"], Tracker["this_data_list_file"], Tracker["constants"]["partstack"], myid, main_node, nproc, preshift=True) volref = recons3d_4nn_ctf_MPI(myid=myid, prjlist=data, symmetry=Tracker["constants"]["sym"], finfo=None) ref_vol_list.append(volref) number_of_ref_class.append(len(Tracker["this_data_list"])) if myid == main_node: log_main.add("group %d members %d " % (igrp, len(Tracker["this_data_list"]))) Tracker["number_of_ref_class"] = number_of_ref_class nx_of_image = ref_vol_list[0].get_xsize() if Tracker["constants"]["PWadjustment"]: Tracker["PWadjustment"] = Tracker["PW_dict"][nx_of_image] else: Tracker["PWadjustment"] = Tracker["constants"][ "PWadjustment"] # no PW adjustment if myid == main_node: for iref in range(len(ref_vol_list)): refdata = [None] * 4 refdata[0] = ref_vol_list[iref] refdata[1] = Tracker refdata[2] = Tracker["constants"]["myid"] refdata[3] = Tracker["constants"]["nproc"] volref = user_func(refdata) volref.write_image(os.path.join(workdir, "volf_stable.hdf"), iref) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) Tracker["this_data_list"] = Tracker["this_accounted_list"] outdir = os.path.join(workdir, "Kmref") empty_group, res_groups, final_list = ali3d_mref_Kmeans_MPI( ref_vol_list, outdir, Tracker["this_accounted_text"], Tracker) Tracker["this_unaccounted_list"] = get_complementary_elements( list_to_be_processed, final_list) if myid == main_node: log_main.add("the number of particles not processed is %d" % len(Tracker["this_unaccounted_list"])) write_text_file(Tracker["this_unaccounted_list"], Tracker["this_unaccounted_text"]) update_full_dict(Tracker["this_unaccounted_list"], Tracker) ####################################### number_of_groups = len(res_groups) vol_list = [] number_of_ref_class = [] for igrp in range(number_of_groups): data, old_shifts = get_shrink_data_huang( Tracker, Tracker["constants"]["nnxo"], os.path.join(outdir, "Class%d.txt" % igrp), Tracker["constants"]["partstack"], myid, main_node, nproc, preshift=True) volref = recons3d_4nn_ctf_MPI(myid=myid, prjlist=data, symmetry=Tracker["constants"]["sym"], finfo=None) vol_list.append(volref) if (myid == main_node): npergroup = len( read_text_file(os.path.join(outdir, "Class%d.txt" % igrp))) else: npergroup = 0 npergroup = bcast_number_to_all(npergroup, main_node) number_of_ref_class.append(npergroup) Tracker["number_of_ref_class"] = number_of_ref_class mpi.mpi_barrier(mpi.MPI_COMM_WORLD) nx_of_image = vol_list[0].get_xsize() if Tracker["constants"]["PWadjustment"]: Tracker["PWadjustment"] = Tracker["PW_dict"][nx_of_image] else: Tracker["PWadjustment"] = Tracker["constants"]["PWadjustment"] if myid == main_node: for ivol in range(len(vol_list)): refdata = [None] * 4 refdata[0] = vol_list[ivol] refdata[1] = Tracker refdata[2] = Tracker["constants"]["myid"] refdata[3] = Tracker["constants"]["nproc"] volref = user_func(refdata) volref.write_image( os.path.join(workdir, "volf_of_Classes.hdf"), ivol) log_main.add("number of unaccounted particles %10d" % len(Tracker["this_unaccounted_list"])) log_main.add("number of accounted particles %10d" % len(Tracker["this_accounted_list"])) Tracker["this_data_list"] = Tracker[ "this_unaccounted_list"] # reset parameters for the next round calculation Tracker["total_stack"] = len(Tracker["this_unaccounted_list"]) Tracker["this_total_stack"] = Tracker["total_stack"] number_of_groups = get_number_of_groups( len(Tracker["this_unaccounted_list"]), number_of_images_per_group) Tracker["number_of_groups"] = number_of_groups while number_of_groups >= 2: generation += 1 partition_dict = {} workdir = os.path.join(masterdir, "generation%03d" % generation) Tracker["this_dir"] = workdir if myid == main_node: log_main.add("*********************************************") log_main.add("----- generation %5d " % generation) log_main.add("number of images per group is set as %10d " % number_of_images_per_group) log_main.add("the number of groups is %10d " % number_of_groups) log_main.add(" number of particles for clustering is %10d" % Tracker["total_stack"]) cmd = "{} {}".format("mkdir", workdir) os.system(cmd) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) create_random_list(Tracker) for indep_run in range(Tracker["constants"]["indep_runs"]): Tracker["this_particle_list"] = Tracker["this_indep_list"][ indep_run] ref_vol = recons_mref(Tracker) if myid == main_node: log_main.add("independent run %10d" % indep_run) outdir = os.path.join(workdir, "EQ_Kmeans%03d" % indep_run) Tracker["this_data_list"] = Tracker["this_unaccounted_list"] #ref_vol=apply_low_pass_filter(ref_vol,Tracker) mref_ali3d_EQ_Kmeans(ref_vol, outdir, Tracker["this_unaccounted_text"], Tracker) partition_dict[indep_run] = Tracker["this_partition"] Tracker["this_data_list"] = Tracker["this_unaccounted_list"] Tracker["total_stack"] = len(Tracker["this_unaccounted_list"]) Tracker["partition_dict"] = partition_dict Tracker["this_total_stack"] = Tracker["total_stack"] total_list_of_this_run = Tracker["this_unaccounted_list"] ############################### do_two_way_comparison(Tracker) ############################### ref_vol_list = [] number_of_ref_class = [] for igrp in range(len(Tracker["two_way_stable_member"])): Tracker["this_data_list"] = Tracker["two_way_stable_member"][ igrp] Tracker["this_data_list_file"] = os.path.join( workdir, "stable_class%d.txt" % igrp) if myid == main_node: write_text_file(Tracker["this_data_list"], Tracker["this_data_list_file"]) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) data, old_shifts = get_shrink_data_huang( Tracker, Tracker["constants"]["nxinit"], Tracker["this_data_list_file"], Tracker["constants"]["partstack"], myid, main_node, nproc, preshift=True) volref = recons3d_4nn_ctf_MPI( myid=myid, prjlist=data, symmetry=Tracker["constants"]["sym"], finfo=None) #volref = filt_tanl(volref, Tracker["constants"]["low_pass_filter"],.1) if myid == main_node: volref.write_image(os.path.join(workdir, "vol_stable.hdf"), iref) #volref = resample(volref,Tracker["shrinkage"]) ref_vol_list.append(volref) number_of_ref_class.append(len(Tracker["this_data_list"])) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) Tracker["number_of_ref_class"] = number_of_ref_class Tracker["this_data_list"] = Tracker["this_accounted_list"] outdir = os.path.join(workdir, "Kmref") empty_group, res_groups, final_list = ali3d_mref_Kmeans_MPI( ref_vol_list, outdir, Tracker["this_accounted_text"], Tracker) # calculate the 3-D structure of original image size for each group number_of_groups = len(res_groups) Tracker["this_unaccounted_list"] = get_complementary_elements( total_list_of_this_run, final_list) if myid == main_node: log_main.add("the number of particles not processed is %d" % len(Tracker["this_unaccounted_list"])) write_text_file(Tracker["this_unaccounted_list"], Tracker["this_unaccounted_text"]) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) update_full_dict(Tracker["this_unaccounted_list"], Tracker) vol_list = [] for igrp in range(number_of_groups): data, old_shifts = get_shrink_data_huang( Tracker, Tracker["constants"]["nnxo"], os.path.join(outdir, "Class%d.txt" % igrp), Tracker["constants"]["partstack"], myid, main_node, nproc, preshift=True) volref = recons3d_4nn_ctf_MPI( myid=myid, prjlist=data, symmetry=Tracker["constants"]["sym"], finfo=None) vol_list.append(volref) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) nx_of_image = ref_vol_list[0].get_xsize() if Tracker["constants"]["PWadjustment"]: Tracker["PWadjustment"] = Tracker["PW_dict"][nx_of_image] else: Tracker["PWadjustment"] = Tracker["constants"]["PWadjustment"] if myid == main_node: for ivol in range(len(vol_list)): refdata = [None] * 4 refdata[0] = vol_list[ivol] refdata[1] = Tracker refdata[2] = Tracker["constants"]["myid"] refdata[3] = Tracker["constants"]["nproc"] volref = user_func(refdata) volref.write_image( os.path.join(workdir, "volf_of_Classes.hdf"), ivol) log_main.add("number of unaccounted particles %10d" % len(Tracker["this_unaccounted_list"])) log_main.add("number of accounted particles %10d" % len(Tracker["this_accounted_list"])) del vol_list mpi.mpi_barrier(mpi.MPI_COMM_WORLD) number_of_groups = get_number_of_groups( len(Tracker["this_unaccounted_list"]), number_of_images_per_group) Tracker["number_of_groups"] = number_of_groups Tracker["this_data_list"] = Tracker["this_unaccounted_list"] Tracker["total_stack"] = len(Tracker["this_unaccounted_list"]) if Tracker["constants"]["unaccounted"]: data, old_shifts = get_shrink_data_huang( Tracker, Tracker["constants"]["nnxo"], Tracker["this_unaccounted_text"], Tracker["constants"]["partstack"], myid, main_node, nproc, preshift=True) volref = recons3d_4nn_ctf_MPI(myid=myid, prjlist=data, symmetry=Tracker["constants"]["sym"], finfo=None) nx_of_image = volref.get_xsize() if Tracker["constants"]["PWadjustment"]: Tracker["PWadjustment"] = Tracker["PW_dict"][nx_of_image] else: Tracker["PWadjustment"] = Tracker["constants"]["PWadjustment"] if (myid == main_node): refdata = [None] * 4 refdata[0] = volref refdata[1] = Tracker refdata[2] = Tracker["constants"]["myid"] refdata[3] = Tracker["constants"]["nproc"] volref = user_func(refdata) #volref = filt_tanl(volref, Tracker["constants"]["low_pass_filter"],.1) volref.write_image( os.path.join(workdir, "volf_unaccounted.hdf")) # Finish program if myid == main_node: log_main.add("sxsort3d finishes") mpi.mpi_barrier(mpi.MPI_COMM_WORLD) return
def main(): progname = os.path.basename(sys.argv[0]) usage = progname + """ Input Output [options] Generate three micrographs, each micrograph contains one projection of a long filament. Input: Reference Volume, output directory Output: Three micrographs stored in output directory sxhelical_demo.py tmp.hdf mic --generate_micrograph --CTF --apix=1.84 Generate noisy cylinder ini.hdf with radius 35 pixels and box size 100 by 100 by 200 sxhelical_demo.py ini.hdf --generate_noisycyl --boxsize="100,100,200" --rad=35 Generate rectangular 2D mask mask2d.hdf with width 60 pixels and image size 200 by 200 pixels sxhelical_demo.py mask2d.hdf --generate_mask --masksize="200,200" --maskwidth=60 Apply the centering parameters to bdb:adata, normalize using average and standard deviation outside the mask, and output the new images to bdb:data sxhelical_demo.py bdb:adata bdb:data mask2d.hdf --applyparams Generate run through example script for helicon sxhelical_demo.py --generate_script --filename=run --seg_ny=180 --ptcl_dist=15 --fract=0.35 """ parser = OptionParser(usage, version=SPARXVERSION) # helicise the Atom coordinates # generate micrographs of helical filament parser.add_option( "--generate_micrograph", action="store_true", default=False, help= "Generate three micrographs where each micrograph contains one projection of a long filament. \n Input: Reference Volume, output directory \n Output: Three micrographs containing helical filament projections stored in output directory" ) parser.add_option("--CTF", action="store_true", default=False, help="Use CTF correction") parser.add_option("--apix", type="float", default=-1, help="pixel size in Angstroms") parser.add_option( "--rand_seed", type="int", default=14567, help= "the seed used for generating random numbers (default 14567) for adding noise to the generated micrographs." ) parser.add_option("--Cs", type="float", default=2.0, help="Microscope Cs (spherical aberation)") parser.add_option("--voltage", type="float", default=200.0, help="Microscope voltage in KV") parser.add_option("--ac", type="float", default=10.0, help="Amplitude contrast (percentage, default=10)") parser.add_option("--nonoise", action="store_true", default=False, help="Do not add noise to the micrograph.") # generate initial volume parser.add_option("--generate_noisycyl", action="store_true", default=False, help="Generate initial volume of noisy cylinder.") parser.add_option( "--boxsize", type="string", default="100,100,200", help= "String containing x , y, z dimensions (separated by comma) in pixels") parser.add_option("--rad", type="int", default=35, help="Radius of initial volume in pixels") # generate 2D mask parser.add_option("--generate_mask", action="store_true", default=False, help="Generate 2D rectangular mask.") parser.add_option( "--masksize", type="string", default="200,200", help= "String containing x and y dimensions (separated by comma) in pixels") parser.add_option("--maskwidth", type="int", default=60, help="Width of rectangular mask") # Apply 2D alignment parameters to input stack and output new images to output stack parser.add_option( "--applyparams", action="store_true", default=False, help= "Apply the centering parameters to input stack, normalize using average and standard deviation outside the mask, and output the new images to output stack" ) # Generate run script parser.add_option("--generate_script", action="store_true", default=False, help="Generate script for helicon run through example") parser.add_option("--filename", type="string", default="runhelicon", help="Name of run script to generate") parser.add_option("--seg_ny", type="int", default=180, help="y-dimension of segment used for refinement") parser.add_option( "--ptcl_dist", type="int", default=15, help= "Distance in pixels between adjacent segments windowed from same filament" ) parser.add_option( "--fract", type="float", default=0.35, help="Fraction of the volume used for applying helical symmetry.") (options, args) = parser.parse_args() if len(args) > 3: sxprint("usage: " + usage) sxprint("Please run '" + progname + " -h' for detailed options") ERROR( "Invalid number of parameters. Please see usage information above." ) return else: if options.generate_script: generate_runscript(options.filename, options.seg_ny, options.ptcl_dist, options.fract) if options.generate_micrograph: if options.apix <= 0: ERROR("Please enter pixel size.") return generate_helimic(args[0], args[1], options.apix, options.CTF, options.Cs, options.voltage, options.ac, options.nonoise, options.rand_seed) if options.generate_noisycyl: from sp_utilities import model_cylinder, model_gauss_noise outvol = args[0] boxdims = options.boxsize.split(',') if len(boxdims) < 1 or len(boxdims) > 3: ERROR( "Enter box size as string containing x , y, z dimensions (separated by comma) in pixels. E.g.: --boxsize=\'100,100,200\'" ) return nx = int(boxdims[0]) if len(boxdims) == 1: ny = nx nz = nx else: ny = int(boxdims[1]) if len(boxdims) == 3: nz = int(boxdims[2]) (model_cylinder(options.rad, nx, ny, nz) * model_gauss_noise(1.0, nx, ny, nz)).write_image(outvol) if options.generate_mask: from sp_utilities import model_blank, pad outvol = args[0] maskdims = options.masksize.split(',') if len(maskdims) < 1 or len(maskdims) > 2: ERROR( "Enter box size as string containing x , y dimensions (separated by comma) in pixels. E.g.: --boxsize=\'200,200\'" ) return nx = int(maskdims[0]) if len(maskdims) == 1: ny = nx else: ny = int(maskdims[1]) mask = pad(model_blank(options.maskwidth, ny, 1, 1.0), nx, ny, 1, 0.0) mask.write_image(outvol) if options.applyparams: from sp_utilities import get_im, get_params2D, set_params2D from sp_fundamentals import cyclic_shift stack = args[0] newstack = args[1] mask = get_im(args[2]) nima = EMUtil.get_image_count(stack) for im in range(nima): prj = get_im(stack, im) alpha, sx, sy, mirror, scale = get_params2D(prj) prj = cyclic_shift(prj, int(sx)) set_params2D(prj, [0.0, 0., 0.0, 0, 1]) stat = Util.infomask(prj, mask, False) prj = (prj - stat[0]) / stat[1] ctf_params = prj.get_attr("ctf") prj.set_attr('ctf_applied', 0) prj.write_image(newstack, im)
def cml_open_proj(stack, ir, ou, lf, hf, dpsi=1): from sp_projection import cml_sinogram from sp_utilities import model_circle, get_params_proj, model_blank, get_im from sp_fundamentals import fftip from sp_filter import filt_tanh # number of projections if type(stack) == type(""): nprj = EMUtil.get_image_count(stack) else: nprj = len(stack) Prj = [] # list of projections Ori = [ -1 ] * 4 * nprj # orientation intial (phi, theta, psi, index) for each projection for i in range(nprj): image = get_im(stack, i) # read initial angles if given try: Ori[4 * i], Ori[4 * i + 1], Ori[4 * i + 2], s2x, s2y = get_params_proj(image) except: pass if (i == 0): nx = image.get_xsize() if (ou < 1): ou = nx // 2 - 1 diameter = int(2 * ou) mask2D = model_circle(ou, nx, nx) if ir > 0: mask2D -= model_circle(ir, nx, nx) # normalize under the mask [mean_a, sigma, imin, imax] = Util.infomask(image, mask2D, True) image -= mean_a Util.mul_scalar(image, 1.0 / sigma) Util.mul_img(image, mask2D) # sinogram sino = cml_sinogram(image, diameter, dpsi) # prepare the cut positions in order to filter (lf: low freq; hf: high freq) ihf = min(int(2 * hf * diameter), diameter + (diameter + 1) % 2) ihf = ihf + (ihf + 1) % 2 # index ihf must be odd to take the img part ilf = max(int(2 * lf * diameter), 0) ilf = ilf + ilf % 2 # index ilf must be even to fall in the real part bdf = ihf - ilf + 1 # process lines nxe = sino.get_xsize() nye = sino.get_ysize() prj = model_blank(bdf, 2 * nye) pp = model_blank(nxe, 2 * nye) for li in range(nye): # get the line li line = Util.window(sino, nxe, 1, 1, 0, li - nye // 2, 0) # u2 (not improve the results) #line = filt_tanh(line, ou / float(nx), ou / float(nx)) # normalize this line [mean_l, sigma_l, imin, imax] = Util.infomask(line, None, True) line = (line - mean_l) / sigma_l # fft fftip(line) # filter (cut part of coef) and create mirror line Util.cml_prepare_line(prj, line, ilf, ihf, li, nye) # store the projection Prj.append(prj) return Prj, Ori
def main(): """ Main function. Arguments: None Returns: None """ command_args = parse_command_line() # Import volume sp_global_def.sxprint("Import volume.") input_vol = sp_utilities.get_im(command_args.input_volume) # Sanity checks sanity_checks(command_args, input_vol) try: os.makedirs(command_args.output_dir) except OSError: sp_global_def.sxprint( "Output directory already exists. No need to create it.") else: sp_global_def.sxprint("Created output directory.") sp_global_def.write_command(command_args.output_dir) output_prefix = os.path.join(command_args.output_dir, command_args.prefix) # Filter volume if specified if command_args.low_pass_filter_resolution is not None: sp_global_def.sxprint("Filter volume to {0}A.".format( command_args.low_pass_filter_resolution)) input_vol = sp_filter.filt_tanl( input_vol, old_div(command_args.pixel_size, command_args.low_pass_filter_resolution), command_args.low_pass_filter_falloff, ) input_vol.write_image(output_prefix + "_filtered_volume.hdf") else: sp_global_def.sxprint("Skip filter volume.") # Create a mask based on the filtered volume sp_global_def.sxprint("Create mask") density_threshold = -9999.0 nsigma = 1.0 if command_args.mol_mass: density_threshold = input_vol.find_3d_threshold( command_args.mol_mass, command_args.pixel_size) sp_global_def.sxprint( "Mask molecular mass translated into binary threshold: ", density_threshold) elif command_args.threshold: density_threshold = command_args.threshold elif command_args.nsigma: nsigma = command_args.nsigma else: assert False if command_args.edge_type == "cosine": mode = "C" elif command_args.edge_type == "gaussian": mode = "G" else: assert False mask_first = sp_morphology.adaptive_mask_scipy( input_vol, nsigma=nsigma, threshold=density_threshold, ndilation=command_args.ndilation, nerosion=command_args.nerosion, edge_width=command_args.edge_width, allow_disconnected=command_args.allow_disconnected, mode=mode, do_approx=command_args.do_old, do_fill=command_args.fill_mask, do_print=True, ) # Create a second mask based on the filtered volume s_mask = None s_density_threshold = 1 s_nsigma = 1.0 if command_args.second_mask is not None: sp_global_def.sxprint("Prepare second mask") s_mask = sp_utilities.get_im(command_args.second_mask) s_density_threshold = -9999.0 s_nsigma = 1.0 if command_args.s_mol_mass: s_density_threshold = input_vol.find_3d_threshold( command_args.s_mol_mass, command_args.s_pixel_size) sp_global_def.sxprint( "Second mask molecular mass translated into binary threshold: ", s_density_threshold, ) elif command_args.s_threshold: s_density_threshold = command_args.s_threshold elif command_args.s_nsigma: s_nsigma = command_args.s_nsigma else: assert False elif command_args.second_mask_shape is not None: sp_global_def.sxprint("Prepare second mask") nx = mask_first.get_xsize() ny = mask_first.get_ysize() nz = mask_first.get_zsize() if command_args.second_mask_shape == "cube": s_nx = command_args.s_nx s_ny = command_args.s_ny s_nz = command_args.s_nz s_mask = sp_utilities.model_blank(s_nx, s_ny, s_nz, 1) elif command_args.second_mask_shape == "cylinder": s_radius = command_args.s_radius s_nx = command_args.s_nx s_ny = command_args.s_ny s_nz = command_args.s_nz try: s_mask = sp_utilities.model_cylinder(s_radius, s_nx, s_ny, s_nz) except RuntimeError as e: sp_global_def.sxprint( "An error occured! Please check the error log") raise elif command_args.second_mask_shape == "sphere": s_radius = command_args.s_radius s_nx = command_args.s_nx s_ny = command_args.s_ny s_nz = command_args.s_nz try: s_mask = sp_utilities.model_circle(s_radius, s_nx, s_ny, s_nz) except RuntimeError as e: sp_global_def.sxprint( "An error occured! Please check the error log") raise else: assert False s_mask = sp_utilities.pad(s_mask, nx, ny, nz, 0) if s_mask is not None: sp_global_def.sxprint("Create second mask") if command_args.s_edge_type == "cosine": mode = "C" elif command_args.s_edge_type == "gaussian": mode = "G" else: assert False s_mask = sp_morphology.adaptive_mask_scipy( s_mask, nsigma=s_nsigma, threshold=s_density_threshold, ndilation=command_args.s_ndilation, nerosion=command_args.s_nerosion, edge_width=command_args.s_edge_width, allow_disconnected=command_args.s_allow_disconnected, mode=mode, do_approx=command_args.s_do_old, do_fill=command_args.s_fill_mask, do_print=True, ) if command_args.s_invert: s_mask = 1 - s_mask sp_global_def.sxprint("Write outputs.") mask_first.write_image(output_prefix + "_mask_first.hdf") s_mask.write_image(output_prefix + "_mask_second.hdf") masked_combined = mask_first * s_mask masked_combined.write_image(output_prefix + "_mask.hdf") else: sp_global_def.sxprint("Write outputs.") mask_first.write_image(output_prefix + "_mask.hdf")
def main(): arglist = [] for arg in sys.argv: arglist.append(arg) progname = os.path.basename(arglist[0]) usage = progname + """ firstvolume secondvolume maskfile directory --prefix --wn --step --cutoff --radius --fsc --res_overall --out_ang_res --apix --MPI Compute local resolution in real space within area outlined by the maskfile and within regions wn x wn x wn """ parser = optparse.OptionParser(usage, version=sp_global_def.SPARXVERSION) parser.add_option("--prefix", type="str", default='localres', help="Prefix for the output files. (default localres)") parser.add_option( "--wn", type="int", default=7, help= "Size of window within which local real-space FSC is computed. (default 7)" ) parser.add_option( "--step", type="float", default=1.0, help="Shell step in Fourier size in pixels. (default 1.0)") parser.add_option("--cutoff", type="float", default=0.143, help="Resolution cut-off for FSC. (default 0.143)") parser.add_option( "--radius", type="int", default=-1, help= "If there is no maskfile, sphere with r=radius will be used. By default, the radius is nx/2-wn (default -1)" ) parser.add_option( "--fsc", type="string", default=None, help= "Save overall FSC curve (might be truncated). By default, the program does not save the FSC curve. (default none)" ) parser.add_option( "--res_overall", type="float", default=-1.0, help= "Overall resolution at the cutoff level estimated by the user [abs units]. (default None)" ) parser.add_option( "--out_ang_res", action="store_true", default=False, help= "Additionally creates a local resolution file in Angstroms. (default False)" ) parser.add_option( "--apix", type="float", default=1.0, help= "Pixel size in Angstrom. Effective only with --out_ang_res options. (default 1.0)" ) parser.add_option("--MPI", action="store_true", default=False, help="Use MPI version.") (options, args) = parser.parse_args(arglist[1:]) if len(args) < 3 or len(args) > 4: sxprint("Usage: " + usage) ERROR( "Invalid number of parameters used. Please see usage information above." ) return if sp_global_def.CACHE_DISABLE: sp_utilities.disable_bdb_cache() res_overall = options.res_overall if options.MPI: number_of_proc = mpi.mpi_comm_size(mpi.MPI_COMM_WORLD) myid = mpi.mpi_comm_rank(mpi.MPI_COMM_WORLD) main_node = 0 sp_global_def.MPI = True cutoff = options.cutoff nk = int(options.wn) if (myid == main_node): #print sys.argv vi = sp_utilities.get_im(sys.argv[1]) ui = sp_utilities.get_im(sys.argv[2]) nx = vi.get_xsize() ny = vi.get_ysize() nz = vi.get_zsize() dis = [nx, ny, nz] else: dis = [0, 0, 0, 0] sp_global_def.BATCH = True dis = sp_utilities.bcast_list_to_all(dis, myid, source_node=main_node) if (myid != main_node): nx = int(dis[0]) ny = int(dis[1]) nz = int(dis[2]) vi = sp_utilities.model_blank(nx, ny, nz) ui = sp_utilities.model_blank(nx, ny, nz) if len(args) == 3: m = sp_utilities.model_circle((min(nx, ny, nz) - nk) // 2, nx, ny, nz) outdir = args[2] elif len(args) == 4: if (myid == main_node): m = sp_morphology.binarize(sp_utilities.get_im(args[2]), 0.5) else: m = sp_utilities.model_blank(nx, ny, nz) outdir = args[3] if os.path.exists(outdir) and myid == 0: sp_global_def.ERROR('Output directory already exists!') elif myid == 0: os.makedirs(outdir) sp_global_def.write_command(outdir) sp_utilities.bcast_EMData_to_all(m, myid, main_node) """Multiline Comment0""" freqvol, resolut = sp_statistics.locres(vi, ui, m, nk, cutoff, options.step, myid, main_node, number_of_proc) if (myid == 0): # Remove outliers based on the Interquartile range output_volume(freqvol, resolut, options.apix, outdir, options.prefix, options.fsc, options.out_ang_res, nx, ny, nz, res_overall) else: cutoff = options.cutoff vi = sp_utilities.get_im(args[0]) ui = sp_utilities.get_im(args[1]) nn = vi.get_xsize() nx = nn ny = nn nz = nn nk = int(options.wn) if len(args) == 3: m = sp_utilities.model_circle((nn - nk) // 2, nn, nn, nn) outdir = args[2] elif len(args) == 4: m = sp_morphology.binarize(sp_utilities.get_im(args[2]), 0.5) outdir = args[3] if os.path.exists(outdir): sp_global_def.ERROR('Output directory already exists!') else: os.makedirs(outdir) sp_global_def.write_command(outdir) mc = sp_utilities.model_blank(nn, nn, nn, 1.0) - m vf = sp_fundamentals.fft(vi) uf = sp_fundamentals.fft(ui) """Multiline Comment1""" lp = int(nn / 2 / options.step + 0.5) step = 0.5 / lp freqvol = sp_utilities.model_blank(nn, nn, nn) resolut = [] for i in range(1, lp): fl = step * i fh = fl + step #print(lp,i,step,fl,fh) v = sp_fundamentals.fft(sp_filter.filt_tophatb(vf, fl, fh)) u = sp_fundamentals.fft(sp_filter.filt_tophatb(uf, fl, fh)) tmp1 = EMAN2_cppwrap.Util.muln_img(v, v) tmp2 = EMAN2_cppwrap.Util.muln_img(u, u) do = EMAN2_cppwrap.Util.infomask( sp_morphology.square_root( sp_morphology.threshold( EMAN2_cppwrap.Util.muln_img(tmp1, tmp2))), m, True)[0] tmp3 = EMAN2_cppwrap.Util.muln_img(u, v) dp = EMAN2_cppwrap.Util.infomask(tmp3, m, True)[0] resolut.append([i, (fl + fh) / 2.0, dp / do]) tmp1 = EMAN2_cppwrap.Util.box_convolution(tmp1, nk) tmp2 = EMAN2_cppwrap.Util.box_convolution(tmp2, nk) tmp3 = EMAN2_cppwrap.Util.box_convolution(tmp3, nk) EMAN2_cppwrap.Util.mul_img(tmp1, tmp2) tmp1 = sp_morphology.square_root(sp_morphology.threshold(tmp1)) EMAN2_cppwrap.Util.mul_img(tmp1, m) EMAN2_cppwrap.Util.add_img(tmp1, mc) EMAN2_cppwrap.Util.mul_img(tmp3, m) EMAN2_cppwrap.Util.add_img(tmp3, mc) EMAN2_cppwrap.Util.div_img(tmp3, tmp1) EMAN2_cppwrap.Util.mul_img(tmp3, m) freq = (fl + fh) / 2.0 bailout = True for x in range(nn): for y in range(nn): for z in range(nn): if (m.get_value_at(x, y, z) > 0.5): if (freqvol.get_value_at(x, y, z) == 0.0): if (tmp3.get_value_at(x, y, z) < cutoff): freqvol.set_value_at(x, y, z, freq) bailout = False else: bailout = False if (bailout): break #print(len(resolut)) # remove outliers output_volume(freqvol, resolut, options.apix, outdir, options.prefix, options.fsc, options.out_ang_res, nx, ny, nz, res_overall)
def test_(self): out_dir_old = "oldmeridien" out_dir_new = "newmeridien" mkdir(out_dir_old) mkdir(out_dir_new) testcommand_old = ( MPI_PATH + " -np " + str(NUM_PROC) + " " + path.join(ABSOLUTE_OLDBIN_PATH, "sp_meridien.py") + " " + " 'bdb:" + path.join(ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "06_SUBSTACK_ANO#isac_substack'") + " " + self.out_dir_old + " " + path.join(ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "09_ADJUSTMENT", "vol3d_ref_moon_eliminated_mask.hdf") + " --initialshifts" + " --radius=145" + " --mask3D=" + path.join(ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "10_MASK", "sp_mask_mask.hdf") + " --symmetry=c5") testcommand_new = ( MPI_PATH + " -np " + str(NUM_PROC) + " " + path.join(ABSOLUTE_BIN_PATH, "sp_meridien.py") + " 'bdb:" + path.join(ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "06_SUBSTACK_ANO#isac_substack'") + " " + self.out_dir_new + " " + path.join(ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "09_ADJUSTMENT", "vol3d_ref_moon_eliminated_mask.hdf") + " --initialshifts" + " --radius=145" + " --mask3D=" + path.join(ABSOLUTE_PATH_TO_SPHIRE_DEMO_RESULTS_FOLDER_NEW, "10_MASK", "sp_mask_mask.hdf") + " --symmetry=c5") # as they are ordered alphanumerically the first is always vol0 subprocess.run(args=[testcommand_old], shell=True, stderr=subprocess.STDOUT) subprocess.run(args=[testcommand_new], shell=True, stderr=subprocess.STDOUT) hdfFilesOld = [ f for f in listdir(path.join(ABSOLUTE_PATH, self.out_dir_old)) if path.isfile(path.join(ABSOLUTE_PATH, self.out_dir_old, f)) and f.split(".")[1] == "hdf" ] hdfFilesNew = [ f for f in listdir(path.join(ABSOLUTE_PATH, self.out_dir_old)) if path.isfile(path.join(ABSOLUTE_PATH, self.out_dir_new, f)) and f.split(".")[1] == "hdf" ] old_v0 = get_im( path.join(ABSOLUTE_PATH, self.out_dir_old, hdfFilesOld[0])) old_v1 = get_im( path.join(ABSOLUTE_PATH, self.out_dir_old, hdfFilesOld[1])) new_v0 = get_im( path.join(ABSOLUTE_PATH, self.out_dir_new, hdfFilesNew[0])) new_v1 = get_im( path.join(ABSOLUTE_PATH, self.out_dir_new, hdfFilesNew[1])) self.assertTrue( allclose(old_v0.get_3dview(), new_v0.get_3dview(), atol=TOLERANCE)) self.assertTrue( allclose(old_v1.get_3dview(), new_v1.get_3dview(), atol=TOLERANCE)) self.assertTrue( allclose(new_v0.get_3dview().flatten().tolist()[0:100], [ 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539, 0.000977565417997539 ], atol=0.005)) self.assertTrue( allclose(new_v1.get_3dview().flatten().tolist()[0:100], [ 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855, 0.0011777321342378855 ], atol=0.005))
def main(): global Tracker, Blockdata progname = os.path.basename(sys.argv[0]) usage = progname + " --output_dir=output_dir --isac_dir=output_dir_of_isac " parser = optparse.OptionParser(usage, version=sp_global_def.SPARXVERSION) parser.add_option( "--pw_adjustment", type="string", default="analytical_model", help= "adjust power spectrum of 2-D averages to an analytic model. Other opions: no_adjustment; bfactor; a text file of 1D rotationally averaged PW", ) #### Four options for --pw_adjustment: # 1> analytical_model(default); # 2> no_adjustment; # 3> bfactor; # 4> adjust_to_given_pw2(user has to provide a text file that contains 1D rotationally averaged PW) # options in common parser.add_option( "--isac_dir", type="string", default="", help="ISAC run output directory, input directory for this command", ) parser.add_option( "--output_dir", type="string", default="", help="output directory where computed averages are saved", ) parser.add_option( "--pixel_size", type="float", default=-1.0, help= "pixel_size of raw images. one can put 1.0 in case of negative stain data", ) parser.add_option( "--fl", type="float", default=-1.0, help= "low pass filter, = -1.0, not applied; =0.0, using FH1 (initial resolution), = 1.0 using FH2 (resolution after local alignment), or user provided value in absolute freqency [0.0:0.5]", ) parser.add_option("--stack", type="string", default="", help="data stack used in ISAC") parser.add_option("--radius", type="int", default=-1, help="radius") parser.add_option("--xr", type="float", default=-1.0, help="local alignment search range") # parser.add_option("--ts", type ="float", default =1.0, help= "local alignment search step") parser.add_option( "--fh", type="float", default=-1.0, help="local alignment high frequencies limit", ) # parser.add_option("--maxit", type ="int", default =5, help= "local alignment iterations") parser.add_option("--navg", type="int", default=1000000, help="number of aveages") parser.add_option( "--local_alignment", action="store_true", default=False, help="do local alignment", ) parser.add_option( "--noctf", action="store_true", default=False, help= "no ctf correction, useful for negative stained data. always ctf for cryo data", ) parser.add_option( "--B_start", type="float", default=45.0, help= "start frequency (Angstrom) of power spectrum for B_factor estimation", ) parser.add_option( "--Bfactor", type="float", default=-1.0, help= "User defined bactors (e.g. 25.0[A^2]). By default, the program automatically estimates B-factor. ", ) (options, args) = parser.parse_args(sys.argv[1:]) adjust_to_analytic_model = (True if options.pw_adjustment == "analytical_model" else False) no_adjustment = True if options.pw_adjustment == "no_adjustment" else False B_enhance = True if options.pw_adjustment == "bfactor" else False adjust_to_given_pw2 = ( True if not (adjust_to_analytic_model or no_adjustment or B_enhance) else False) # mpi nproc = mpi.mpi_comm_size(mpi.MPI_COMM_WORLD) myid = mpi.mpi_comm_rank(mpi.MPI_COMM_WORLD) Blockdata = {} Blockdata["nproc"] = nproc Blockdata["myid"] = myid Blockdata["main_node"] = 0 Blockdata["shared_comm"] = mpi.mpi_comm_split_type( mpi.MPI_COMM_WORLD, mpi.MPI_COMM_TYPE_SHARED, 0, mpi.MPI_INFO_NULL) Blockdata["myid_on_node"] = mpi.mpi_comm_rank(Blockdata["shared_comm"]) Blockdata["no_of_processes_per_group"] = mpi.mpi_comm_size( Blockdata["shared_comm"]) masters_from_groups_vs_everything_else_comm = mpi.mpi_comm_split( mpi.MPI_COMM_WORLD, Blockdata["main_node"] == Blockdata["myid_on_node"], Blockdata["myid_on_node"], ) Blockdata["color"], Blockdata[ "no_of_groups"], balanced_processor_load_on_nodes = sp_utilities.get_colors_and_subsets( Blockdata["main_node"], mpi.MPI_COMM_WORLD, Blockdata["myid"], Blockdata["shared_comm"], Blockdata["myid_on_node"], masters_from_groups_vs_everything_else_comm, ) # We need two nodes for processing of volumes Blockdata["node_volume"] = [ Blockdata["no_of_groups"] - 3, Blockdata["no_of_groups"] - 2, Blockdata["no_of_groups"] - 1, ] # For 3D stuff take three last nodes # We need two CPUs for processing of volumes, they are taken to be main CPUs on each volume # We have to send the two myids to all nodes so we can identify main nodes on two selected groups. Blockdata["nodes"] = [ Blockdata["node_volume"][0] * Blockdata["no_of_processes_per_group"], Blockdata["node_volume"][1] * Blockdata["no_of_processes_per_group"], Blockdata["node_volume"][2] * Blockdata["no_of_processes_per_group"], ] # End of Blockdata: sorting requires at least three nodes, and the used number of nodes be integer times of three sp_global_def.BATCH = True sp_global_def.MPI = True if adjust_to_given_pw2: checking_flag = 0 if Blockdata["myid"] == Blockdata["main_node"]: if not os.path.exists(options.pw_adjustment): checking_flag = 1 checking_flag = sp_utilities.bcast_number_to_all( checking_flag, Blockdata["main_node"], mpi.MPI_COMM_WORLD) if checking_flag == 1: sp_global_def.ERROR("User provided power spectrum does not exist", myid=Blockdata["myid"]) Tracker = {} Constants = {} Constants["isac_dir"] = options.isac_dir Constants["masterdir"] = options.output_dir Constants["pixel_size"] = options.pixel_size Constants["orgstack"] = options.stack Constants["radius"] = options.radius Constants["xrange"] = options.xr Constants["FH"] = options.fh Constants["low_pass_filter"] = options.fl # Constants["maxit"] = options.maxit Constants["navg"] = options.navg Constants["B_start"] = options.B_start Constants["Bfactor"] = options.Bfactor if adjust_to_given_pw2: Constants["modelpw"] = options.pw_adjustment Tracker["constants"] = Constants # ------------------------------------------------------------- # # Create and initialize Tracker dictionary with input options # State Variables # <<<---------------------->>>imported functions<<<--------------------------------------------- # x_range = max(Tracker["constants"]["xrange"], int(1./Tracker["ini_shrink"])+1) # y_range = x_range ####----------------------------------------------------------- # Create Master directory and associated subdirectories line = time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime()) + " =>" if Tracker["constants"]["masterdir"] == Tracker["constants"]["isac_dir"]: masterdir = os.path.join(Tracker["constants"]["isac_dir"], "sharpen") else: masterdir = Tracker["constants"]["masterdir"] if Blockdata["myid"] == Blockdata["main_node"]: msg = "Postprocessing ISAC 2D averages starts" sp_global_def.sxprint(line, "Postprocessing ISAC 2D averages starts") if not masterdir: timestring = time.strftime("_%d_%b_%Y_%H_%M_%S", time.localtime()) masterdir = "sharpen_" + Tracker["constants"]["isac_dir"] os.makedirs(masterdir) else: if os.path.exists(masterdir): sp_global_def.sxprint("%s already exists" % masterdir) else: os.makedirs(masterdir) sp_global_def.write_command(masterdir) subdir_path = os.path.join(masterdir, "ali2d_local_params_avg") if not os.path.exists(subdir_path): os.mkdir(subdir_path) subdir_path = os.path.join(masterdir, "params_avg") if not os.path.exists(subdir_path): os.mkdir(subdir_path) li = len(masterdir) else: li = 0 li = mpi.mpi_bcast(li, 1, mpi.MPI_INT, Blockdata["main_node"], mpi.MPI_COMM_WORLD)[0] masterdir = mpi.mpi_bcast(masterdir, li, mpi.MPI_CHAR, Blockdata["main_node"], mpi.MPI_COMM_WORLD) masterdir = b"".join(masterdir).decode('latin1') Tracker["constants"]["masterdir"] = masterdir log_main = sp_logger.Logger(sp_logger.BaseLogger_Files()) log_main.prefix = Tracker["constants"]["masterdir"] + "/" while not os.path.exists(Tracker["constants"]["masterdir"]): sp_global_def.sxprint( "Node ", Blockdata["myid"], " waiting...", Tracker["constants"]["masterdir"], ) time.sleep(1) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if Blockdata["myid"] == Blockdata["main_node"]: init_dict = {} sp_global_def.sxprint(Tracker["constants"]["isac_dir"]) Tracker["directory"] = os.path.join(Tracker["constants"]["isac_dir"], "2dalignment") core = sp_utilities.read_text_row( os.path.join(Tracker["directory"], "initial2Dparams.txt")) for im in range(len(core)): init_dict[im] = core[im] del core else: init_dict = 0 init_dict = sp_utilities.wrap_mpi_bcast(init_dict, Blockdata["main_node"], communicator=mpi.MPI_COMM_WORLD) ### do_ctf = True if options.noctf: do_ctf = False if Blockdata["myid"] == Blockdata["main_node"]: if do_ctf: sp_global_def.sxprint("CTF correction is on") else: sp_global_def.sxprint("CTF correction is off") if options.local_alignment: sp_global_def.sxprint("local refinement is on") else: sp_global_def.sxprint("local refinement is off") if B_enhance: sp_global_def.sxprint("Bfactor is to be applied on averages") elif adjust_to_given_pw2: sp_global_def.sxprint( "PW of averages is adjusted to a given 1D PW curve") elif adjust_to_analytic_model: sp_global_def.sxprint( "PW of averages is adjusted to analytical model") else: sp_global_def.sxprint("PW of averages is not adjusted") # Tracker["constants"]["orgstack"] = "bdb:"+ os.path.join(Tracker["constants"]["isac_dir"],"../","sparx_stack") image = sp_utilities.get_im(Tracker["constants"]["orgstack"], 0) Tracker["constants"]["nnxo"] = image.get_xsize() if Tracker["constants"]["pixel_size"] == -1.0: sp_global_def.sxprint( "Pixel size value is not provided by user. extracting it from ctf header entry of the original stack." ) try: ctf_params = image.get_attr("ctf") Tracker["constants"]["pixel_size"] = ctf_params.apix except: sp_global_def.ERROR( "Pixel size could not be extracted from the original stack.", myid=Blockdata["myid"], ) ## Now fill in low-pass filter isac_shrink_path = os.path.join(Tracker["constants"]["isac_dir"], "README_shrink_ratio.txt") if not os.path.exists(isac_shrink_path): sp_global_def.ERROR( "%s does not exist in the specified ISAC run output directory" % (isac_shrink_path), myid=Blockdata["myid"], ) isac_shrink_file = open(isac_shrink_path, "r") isac_shrink_lines = isac_shrink_file.readlines() isac_shrink_ratio = float( isac_shrink_lines[5] ) # 6th line: shrink ratio (= [target particle radius]/[particle radius]) used in the ISAC run isac_radius = float( isac_shrink_lines[6] ) # 7th line: particle radius at original pixel size used in the ISAC run isac_shrink_file.close() print("Extracted parameter values") print("ISAC shrink ratio : {0}".format(isac_shrink_ratio)) print("ISAC particle radius : {0}".format(isac_radius)) Tracker["ini_shrink"] = isac_shrink_ratio else: Tracker["ini_shrink"] = 0.0 Tracker = sp_utilities.wrap_mpi_bcast(Tracker, Blockdata["main_node"], communicator=mpi.MPI_COMM_WORLD) # print(Tracker["constants"]["pixel_size"], "pixel_size") x_range = max( Tracker["constants"]["xrange"], int(old_div(1.0, Tracker["ini_shrink"]) + 0.99999), ) a_range = y_range = x_range if Blockdata["myid"] == Blockdata["main_node"]: parameters = sp_utilities.read_text_row( os.path.join(Tracker["constants"]["isac_dir"], "all_parameters.txt")) else: parameters = 0 parameters = sp_utilities.wrap_mpi_bcast(parameters, Blockdata["main_node"], communicator=mpi.MPI_COMM_WORLD) params_dict = {} list_dict = {} # parepare params_dict # navg = min(Tracker["constants"]["navg"]*Blockdata["nproc"], EMUtil.get_image_count(os.path.join(Tracker["constants"]["isac_dir"], "class_averages.hdf"))) navg = min( Tracker["constants"]["navg"], EMAN2_cppwrap.EMUtil.get_image_count( os.path.join(Tracker["constants"]["isac_dir"], "class_averages.hdf")), ) global_dict = {} ptl_list = [] memlist = [] if Blockdata["myid"] == Blockdata["main_node"]: sp_global_def.sxprint("Number of averages computed in this run is %d" % navg) for iavg in range(navg): params_of_this_average = [] image = sp_utilities.get_im( os.path.join(Tracker["constants"]["isac_dir"], "class_averages.hdf"), iavg, ) members = sorted(image.get_attr("members")) memlist.append(members) for im in range(len(members)): abs_id = members[im] global_dict[abs_id] = [iavg, im] P = sp_utilities.combine_params2( init_dict[abs_id][0], init_dict[abs_id][1], init_dict[abs_id][2], init_dict[abs_id][3], parameters[abs_id][0], old_div(parameters[abs_id][1], Tracker["ini_shrink"]), old_div(parameters[abs_id][2], Tracker["ini_shrink"]), parameters[abs_id][3], ) if parameters[abs_id][3] == -1: sp_global_def.sxprint( "WARNING: Image #{0} is an unaccounted particle with invalid 2D alignment parameters and should not be the member of any classes. Please check the consitency of input dataset." .format(abs_id) ) # How to check what is wrong about mirror = -1 (Toshio 2018/01/11) params_of_this_average.append([P[0], P[1], P[2], P[3], 1.0]) ptl_list.append(abs_id) params_dict[iavg] = params_of_this_average list_dict[iavg] = members sp_utilities.write_text_row( params_of_this_average, os.path.join( Tracker["constants"]["masterdir"], "params_avg", "params_avg_%03d.txt" % iavg, ), ) ptl_list.sort() init_params = [None for im in range(len(ptl_list))] for im in range(len(ptl_list)): init_params[im] = [ptl_list[im]] + params_dict[global_dict[ ptl_list[im]][0]][global_dict[ptl_list[im]][1]] sp_utilities.write_text_row( init_params, os.path.join(Tracker["constants"]["masterdir"], "init_isac_params.txt"), ) else: params_dict = 0 list_dict = 0 memlist = 0 params_dict = sp_utilities.wrap_mpi_bcast(params_dict, Blockdata["main_node"], communicator=mpi.MPI_COMM_WORLD) list_dict = sp_utilities.wrap_mpi_bcast(list_dict, Blockdata["main_node"], communicator=mpi.MPI_COMM_WORLD) memlist = sp_utilities.wrap_mpi_bcast(memlist, Blockdata["main_node"], communicator=mpi.MPI_COMM_WORLD) # Now computing! del init_dict tag_sharpen_avg = 1000 ## always apply low pass filter to B_enhanced images to suppress noise in high frequencies enforced_to_H1 = False if B_enhance: if Tracker["constants"]["low_pass_filter"] == -1.0: enforced_to_H1 = True # distribute workload among mpi processes image_start, image_end = sp_applications.MPI_start_end( navg, Blockdata["nproc"], Blockdata["myid"]) if Blockdata["myid"] == Blockdata["main_node"]: cpu_dict = {} for iproc in range(Blockdata["nproc"]): local_image_start, local_image_end = sp_applications.MPI_start_end( navg, Blockdata["nproc"], iproc) for im in range(local_image_start, local_image_end): cpu_dict[im] = iproc else: cpu_dict = 0 cpu_dict = sp_utilities.wrap_mpi_bcast(cpu_dict, Blockdata["main_node"], communicator=mpi.MPI_COMM_WORLD) slist = [None for im in range(navg)] ini_list = [None for im in range(navg)] avg1_list = [None for im in range(navg)] avg2_list = [None for im in range(navg)] data_list = [None for im in range(navg)] plist_dict = {} if Blockdata["myid"] == Blockdata["main_node"]: if B_enhance: sp_global_def.sxprint( "Avg ID B-factor FH1(Res before ali) FH2(Res after ali)") else: sp_global_def.sxprint( "Avg ID FH1(Res before ali) FH2(Res after ali)") FH_list = [[0, 0.0, 0.0] for im in range(navg)] for iavg in range(image_start, image_end): mlist = EMAN2_cppwrap.EMData.read_images( Tracker["constants"]["orgstack"], list_dict[iavg]) for im in range(len(mlist)): sp_utilities.set_params2D(mlist[im], params_dict[iavg][im], xform="xform.align2d") if options.local_alignment: new_avg, plist, FH2 = sp_applications.refinement_2d_local( mlist, Tracker["constants"]["radius"], a_range, x_range, y_range, CTF=do_ctf, SNR=1.0e10, ) plist_dict[iavg] = plist FH1 = -1.0 else: new_avg, frc, plist = compute_average( mlist, Tracker["constants"]["radius"], do_ctf) FH1 = get_optimistic_res(frc) FH2 = -1.0 FH_list[iavg] = [iavg, FH1, FH2] if B_enhance: new_avg, gb = apply_enhancement( new_avg, Tracker["constants"]["B_start"], Tracker["constants"]["pixel_size"], Tracker["constants"]["Bfactor"], ) sp_global_def.sxprint(" %6d %6.3f %4.3f %4.3f" % (iavg, gb, FH1, FH2)) elif adjust_to_given_pw2: roo = sp_utilities.read_text_file(Tracker["constants"]["modelpw"], -1) roo = roo[0] # always on the first column new_avg = adjust_pw_to_model(new_avg, Tracker["constants"]["pixel_size"], roo) sp_global_def.sxprint(" %6d %4.3f %4.3f " % (iavg, FH1, FH2)) elif adjust_to_analytic_model: new_avg = adjust_pw_to_model(new_avg, Tracker["constants"]["pixel_size"], None) sp_global_def.sxprint(" %6d %4.3f %4.3f " % (iavg, FH1, FH2)) elif no_adjustment: pass if Tracker["constants"]["low_pass_filter"] != -1.0: if Tracker["constants"]["low_pass_filter"] == 0.0: low_pass_filter = FH1 elif Tracker["constants"]["low_pass_filter"] == 1.0: low_pass_filter = FH2 if not options.local_alignment: low_pass_filter = FH1 else: low_pass_filter = Tracker["constants"]["low_pass_filter"] if low_pass_filter >= 0.45: low_pass_filter = 0.45 new_avg = sp_filter.filt_tanl(new_avg, low_pass_filter, 0.02) else: # No low pass filter but if enforced if enforced_to_H1: new_avg = sp_filter.filt_tanl(new_avg, FH1, 0.02) if B_enhance: new_avg = sp_fundamentals.fft(new_avg) new_avg.set_attr("members", list_dict[iavg]) new_avg.set_attr("n_objects", len(list_dict[iavg])) slist[iavg] = new_avg sp_global_def.sxprint( time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime()) + " =>", "Refined average %7d" % iavg, ) ## send to main node to write mpi.mpi_barrier(mpi.MPI_COMM_WORLD) for im in range(navg): # avg if (cpu_dict[im] == Blockdata["myid"] and Blockdata["myid"] != Blockdata["main_node"]): sp_utilities.send_EMData(slist[im], Blockdata["main_node"], tag_sharpen_avg) elif (cpu_dict[im] == Blockdata["myid"] and Blockdata["myid"] == Blockdata["main_node"]): slist[im].set_attr("members", memlist[im]) slist[im].set_attr("n_objects", len(memlist[im])) slist[im].write_image( os.path.join(Tracker["constants"]["masterdir"], "class_averages.hdf"), im, ) elif (cpu_dict[im] != Blockdata["myid"] and Blockdata["myid"] == Blockdata["main_node"]): new_avg_other_cpu = sp_utilities.recv_EMData( cpu_dict[im], tag_sharpen_avg) new_avg_other_cpu.set_attr("members", memlist[im]) new_avg_other_cpu.set_attr("n_objects", len(memlist[im])) new_avg_other_cpu.write_image( os.path.join(Tracker["constants"]["masterdir"], "class_averages.hdf"), im, ) if options.local_alignment: if cpu_dict[im] == Blockdata["myid"]: sp_utilities.write_text_row( plist_dict[im], os.path.join( Tracker["constants"]["masterdir"], "ali2d_local_params_avg", "ali2d_local_params_avg_%03d.txt" % im, ), ) if (cpu_dict[im] == Blockdata["myid"] and cpu_dict[im] != Blockdata["main_node"]): sp_utilities.wrap_mpi_send(plist_dict[im], Blockdata["main_node"], mpi.MPI_COMM_WORLD) sp_utilities.wrap_mpi_send(FH_list, Blockdata["main_node"], mpi.MPI_COMM_WORLD) elif (cpu_dict[im] != Blockdata["main_node"] and Blockdata["myid"] == Blockdata["main_node"]): dummy = sp_utilities.wrap_mpi_recv(cpu_dict[im], mpi.MPI_COMM_WORLD) plist_dict[im] = dummy dummy = sp_utilities.wrap_mpi_recv(cpu_dict[im], mpi.MPI_COMM_WORLD) FH_list[im] = dummy[im] else: if (cpu_dict[im] == Blockdata["myid"] and cpu_dict[im] != Blockdata["main_node"]): sp_utilities.wrap_mpi_send(FH_list, Blockdata["main_node"], mpi.MPI_COMM_WORLD) elif (cpu_dict[im] != Blockdata["main_node"] and Blockdata["myid"] == Blockdata["main_node"]): dummy = sp_utilities.wrap_mpi_recv(cpu_dict[im], mpi.MPI_COMM_WORLD) FH_list[im] = dummy[im] mpi.mpi_barrier(mpi.MPI_COMM_WORLD) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if options.local_alignment: if Blockdata["myid"] == Blockdata["main_node"]: ali3d_local_params = [None for im in range(len(ptl_list))] for im in range(len(ptl_list)): ali3d_local_params[im] = [ptl_list[im]] + plist_dict[ global_dict[ptl_list[im]][0]][global_dict[ptl_list[im]][1]] sp_utilities.write_text_row( ali3d_local_params, os.path.join(Tracker["constants"]["masterdir"], "ali2d_local_params.txt"), ) sp_utilities.write_text_row( FH_list, os.path.join(Tracker["constants"]["masterdir"], "FH_list.txt")) else: if Blockdata["myid"] == Blockdata["main_node"]: sp_utilities.write_text_row( FH_list, os.path.join(Tracker["constants"]["masterdir"], "FH_list.txt")) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) target_xr = 3 target_yr = 3 if Blockdata["myid"] == 0: cmd = "{} {} {} {} {} {} {} {} {} {}".format( "sp_chains.py", os.path.join(Tracker["constants"]["masterdir"], "class_averages.hdf"), os.path.join(Tracker["constants"]["masterdir"], "junk.hdf"), os.path.join(Tracker["constants"]["masterdir"], "ordered_class_averages.hdf"), "--circular", "--radius=%d" % Tracker["constants"]["radius"], "--xr=%d" % (target_xr + 1), "--yr=%d" % (target_yr + 1), "--align", ">/dev/null", ) junk = sp_utilities.cmdexecute(cmd) cmd = "{} {}".format( "rm -rf", os.path.join(Tracker["constants"]["masterdir"], "junk.hdf")) junk = sp_utilities.cmdexecute(cmd) return
def helicalshiftali_MPI(stack, maskfile=None, maxit=100, CTF=False, snr=1.0, Fourvar=False, search_rng=-1): nproc = mpi.mpi_comm_size(mpi.MPI_COMM_WORLD) myid = mpi.mpi_comm_rank(mpi.MPI_COMM_WORLD) main_node = 0 ftp = file_type(stack) if myid == main_node: print_begin_msg("helical-shiftali_MPI") max_iter = int(maxit) if (myid == main_node): infils = EMUtil.get_all_attributes(stack, "filament") ptlcoords = EMUtil.get_all_attributes(stack, 'ptcl_source_coord') filaments = ordersegments(infils, ptlcoords) total_nfils = len(filaments) inidl = [0] * total_nfils for i in range(total_nfils): inidl[i] = len(filaments[i]) linidl = sum(inidl) nima = linidl tfilaments = [] for i in range(total_nfils): tfilaments += filaments[i] del filaments else: total_nfils = 0 linidl = 0 total_nfils = bcast_number_to_all(total_nfils, source_node=main_node) if myid != main_node: inidl = [-1] * total_nfils inidl = bcast_list_to_all(inidl, myid, source_node=main_node) linidl = bcast_number_to_all(linidl, source_node=main_node) if myid != main_node: tfilaments = [-1] * linidl tfilaments = bcast_list_to_all(tfilaments, myid, source_node=main_node) filaments = [] iendi = 0 for i in range(total_nfils): isti = iendi iendi = isti + inidl[i] filaments.append(tfilaments[isti:iendi]) del tfilaments, inidl if myid == main_node: print_msg("total number of filaments: %d" % total_nfils) if total_nfils < nproc: ERROR( 'number of CPUs (%i) is larger than the number of filaments (%i), please reduce the number of CPUs used' % (nproc, total_nfils), myid=myid) # balanced load temp = chunks_distribution([[len(filaments[i]), i] for i in range(len(filaments))], nproc)[myid:myid + 1][0] filaments = [filaments[temp[i][1]] for i in range(len(temp))] nfils = len(filaments) #filaments = [[0,1]] #print "filaments",filaments list_of_particles = [] indcs = [] k = 0 for i in range(nfils): list_of_particles += filaments[i] k1 = k + len(filaments[i]) indcs.append([k, k1]) k = k1 data = EMData.read_images(stack, list_of_particles) ldata = len(data) sxprint("ldata=", ldata) nx = data[0].get_xsize() ny = data[0].get_ysize() if maskfile == None: mrad = min(nx, ny) // 2 - 2 mask = pad(model_blank(2 * mrad + 1, ny, 1, 1.0), nx, ny, 1, 0.0) else: mask = get_im(maskfile) # apply initial xform.align2d parameters stored in header init_params = [] for im in range(ldata): t = data[im].get_attr('xform.align2d') init_params.append(t) p = t.get_params("2d") data[im] = rot_shift2D(data[im], p['alpha'], p['tx'], p['ty'], p['mirror'], p['scale']) if CTF: from sp_filter import filt_ctf from sp_morphology import ctf_img ctf_abs_sum = EMData(nx, ny, 1, False) ctf_2_sum = EMData(nx, ny, 1, False) else: ctf_2_sum = None ctf_abs_sum = None from sp_utilities import info for im in range(ldata): data[im].set_attr('ID', list_of_particles[im]) st = Util.infomask(data[im], mask, False) data[im] -= st[0] if CTF: ctf_params = data[im].get_attr("ctf") qctf = data[im].get_attr("ctf_applied") if qctf == 0: data[im] = filt_ctf(fft(data[im]), ctf_params) data[im].set_attr('ctf_applied', 1) elif qctf != 1: ERROR('Incorrectly set qctf flag', myid=myid) ctfimg = ctf_img(nx, ctf_params, ny=ny) Util.add_img2(ctf_2_sum, ctfimg) Util.add_img_abs(ctf_abs_sum, ctfimg) else: data[im] = fft(data[im]) del list_of_particles if CTF: reduce_EMData_to_root(ctf_2_sum, myid, main_node) reduce_EMData_to_root(ctf_abs_sum, myid, main_node) if CTF: if myid != main_node: del ctf_2_sum del ctf_abs_sum else: temp = EMData(nx, ny, 1, False) tsnr = 1. / snr for i in range(0, nx + 2, 2): for j in range(ny): temp.set_value_at(i, j, tsnr) temp.set_value_at(i + 1, j, 0.0) #info(ctf_2_sum) Util.add_img(ctf_2_sum, temp) #info(ctf_2_sum) del temp total_iter = 0 shift_x = [0.0] * ldata for Iter in range(max_iter): if myid == main_node: start_time = time() print_msg("Iteration #%4d\n" % (total_iter)) total_iter += 1 avg = EMData(nx, ny, 1, False) for im in range(ldata): Util.add_img(avg, fshift(data[im], shift_x[im])) reduce_EMData_to_root(avg, myid, main_node) if myid == main_node: if CTF: tavg = Util.divn_filter(avg, ctf_2_sum) else: tavg = Util.mult_scalar(avg, 1.0 / float(nima)) else: tavg = model_blank(nx, ny) if Fourvar: bcast_EMData_to_all(tavg, myid, main_node) vav, rvar = varf2d_MPI(myid, data, tavg, mask, "a", CTF) if myid == main_node: if Fourvar: tavg = fft(Util.divn_img(fft(tavg), vav)) vav_r = Util.pack_complex_to_real(vav) # normalize and mask tavg in real space tavg = fft(tavg) stat = Util.infomask(tavg, mask, False) tavg -= stat[0] Util.mul_img(tavg, mask) tavg.write_image("tavg.hdf", Iter) # For testing purposes: shift tavg to some random place and see if the centering is still correct #tavg = rot_shift3D(tavg,sx=3,sy=-4) if Fourvar: del vav bcast_EMData_to_all(tavg, myid, main_node) tavg = fft(tavg) sx_sum = 0.0 nxc = nx // 2 for ifil in range(nfils): """ # Calculate filament average avg = EMData(nx, ny, 1, False) filnima = 0 for im in xrange(indcs[ifil][0], indcs[ifil][1]): Util.add_img(avg, data[im]) filnima += 1 tavg = Util.mult_scalar(avg, 1.0/float(filnima)) """ # Calculate 1D ccf between each segment and filament average nsegms = indcs[ifil][1] - indcs[ifil][0] ctx = [None] * nsegms pcoords = [None] * nsegms for im in range(indcs[ifil][0], indcs[ifil][1]): ctx[im - indcs[ifil][0]] = Util.window(ccf(tavg, data[im]), nx, 1) pcoords[im - indcs[ifil][0]] = data[im].get_attr( 'ptcl_source_coord') #ctx[im-indcs[ifil][0]].write_image("ctx.hdf",im-indcs[ifil][0]) #print " CTX ",myid,im,Util.infomask(ctx[im-indcs[ifil][0]], None, True) # search for best x-shift cents = nsegms // 2 dst = sqrt( max((pcoords[cents][0] - pcoords[0][0])**2 + (pcoords[cents][1] - pcoords[0][1])**2, (pcoords[cents][0] - pcoords[-1][0])**2 + (pcoords[cents][1] - pcoords[-1][1])**2)) maxincline = atan2(ny // 2 - 2 - float(search_rng), dst) kang = int(dst * tan(maxincline) + 0.5) #print " settings ",nsegms,cents,dst,search_rng,maxincline,kang # ## C code for alignment. @ming results = [0.0] * 3 results = Util.helixshiftali(ctx, pcoords, nsegms, maxincline, kang, search_rng, nxc) sib = int(results[0]) bang = results[1] qm = results[2] #print qm, sib, bang # qm = -1.e23 # # for six in xrange(-search_rng, search_rng+1,1): # q0 = ctx[cents].get_value_at(six+nxc) # for incline in xrange(kang+1): # qt = q0 # qu = q0 # if(kang>0): tang = tan(maxincline/kang*incline) # else: tang = 0.0 # for kim in xrange(cents+1,nsegms): # dst = sqrt((pcoords[cents][0] - pcoords[kim][0])**2 + (pcoords[cents][1] - pcoords[kim][1])**2) # xl = dst*tang+six+nxc # ixl = int(xl) # dxl = xl - ixl # #print " A ", ifil,six,incline,kim,xl,ixl,dxl # qt += (1.0-dxl)*ctx[kim].get_value_at(ixl) + dxl*ctx[kim].get_value_at(ixl+1) # xl = -dst*tang+six+nxc # ixl = int(xl) # dxl = xl - ixl # qu += (1.0-dxl)*ctx[kim].get_value_at(ixl) + dxl*ctx[kim].get_value_at(ixl+1) # for kim in xrange(cents): # dst = sqrt((pcoords[cents][0] - pcoords[kim][0])**2 + (pcoords[cents][1] - pcoords[kim][1])**2) # xl = -dst*tang+six+nxc # ixl = int(xl) # dxl = xl - ixl # qt += (1.0-dxl)*ctx[kim].get_value_at(ixl) + dxl*ctx[kim].get_value_at(ixl+1) # xl = dst*tang+six+nxc # ixl = int(xl) # dxl = xl - ixl # qu += (1.0-dxl)*ctx[kim].get_value_at(ixl) + dxl*ctx[kim].get_value_at(ixl+1) # if( qt > qm ): # qm = qt # sib = six # bang = tang # if( qu > qm ): # qm = qu # sib = six # bang = -tang #if incline == 0: print "incline = 0 ",six,tang,qt,qu #print qm,six,sib,bang #print " got results ",indcs[ifil][0], indcs[ifil][1], ifil,myid,qm,sib,tang,bang,len(ctx),Util.infomask(ctx[0], None, True) for im in range(indcs[ifil][0], indcs[ifil][1]): kim = im - indcs[ifil][0] dst = sqrt((pcoords[cents][0] - pcoords[kim][0])**2 + (pcoords[cents][1] - pcoords[kim][1])**2) if (kim < cents): xl = -dst * bang + sib else: xl = dst * bang + sib shift_x[im] = xl # Average shift sx_sum += shift_x[indcs[ifil][0] + cents] # #print myid,sx_sum,total_nfils sx_sum = mpi.mpi_reduce(sx_sum, 1, mpi.MPI_FLOAT, mpi.MPI_SUM, main_node, mpi.MPI_COMM_WORLD) if myid == main_node: sx_sum = float(sx_sum[0]) / total_nfils print_msg("Average shift %6.2f\n" % (sx_sum)) else: sx_sum = 0.0 sx_sum = 0.0 sx_sum = bcast_number_to_all(sx_sum, source_node=main_node) for im in range(ldata): shift_x[im] -= sx_sum #print " %3d %6.3f"%(im,shift_x[im]) #exit() # combine shifts found with the original parameters for im in range(ldata): t1 = Transform() ##import random ##shix=random.randint(-10, 10) ##t1.set_params({"type":"2D","tx":shix}) t1.set_params({"type": "2D", "tx": shift_x[im]}) # combine t0 and t1 tt = t1 * init_params[im] data[im].set_attr("xform.align2d", tt) # write out headers and STOP, under MPI writing has to be done sequentially mpi.mpi_barrier(mpi.MPI_COMM_WORLD) par_str = ["xform.align2d", "ID"] if myid == main_node: from sp_utilities import file_type if (file_type(stack) == "bdb"): from sp_utilities import recv_attr_dict_bdb recv_attr_dict_bdb(main_node, stack, data, par_str, 0, ldata, nproc) else: from sp_utilities import recv_attr_dict recv_attr_dict(main_node, stack, data, par_str, 0, ldata, nproc) else: send_attr_dict(main_node, data, par_str, 0, ldata) if myid == main_node: print_end_msg("helical-shiftali_MPI")
def main(): def params_3D_2D_NEW(phi, theta, psi, s2x, s2y, mirror): # the final ali2d parameters already combine shifts operation first and rotation operation second for parameters converted from 3D if mirror: m = 1 alpha, sx, sy, scalen = compose_transform2(0, s2x, s2y, 1.0, 540.0 - psi, 0, 0, 1.0) else: m = 0 alpha, sx, sy, scalen = compose_transform2(0, s2x, s2y, 1.0, 360.0 - psi, 0, 0, 1.0) return alpha, sx, sy, m progname = os.path.basename(sys.argv[0]) usage = progname + " prj_stack --ave2D= --var2D= --ave3D= --var3D= --img_per_grp= --fl= --aa= --sym=symmetry --CTF" parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--output_dir", type="string", default="./", help="Output directory") parser.add_option("--ave2D", type="string", default=False, help="Write to the disk a stack of 2D averages") parser.add_option("--var2D", type="string", default=False, help="Write to the disk a stack of 2D variances") parser.add_option("--ave3D", type="string", default=False, help="Write to the disk reconstructed 3D average") parser.add_option("--var3D", type="string", default=False, help="Compute 3D variability (time consuming!)") parser.add_option( "--img_per_grp", type="int", default=100, help="Number of neighbouring projections.(Default is 100)") parser.add_option( "--no_norm", action="store_true", default=False, help="Do not use normalization.(Default is to apply normalization)") #parser.add_option("--radius", type="int" , default=-1 , help="radius for 3D variability" ) parser.add_option( "--npad", type="int", default=2, help= "Number of time to pad the original images.(Default is 2 times padding)" ) parser.add_option("--sym", type="string", default="c1", help="Symmetry. (Default is no symmetry)") parser.add_option( "--fl", type="float", default=0.0, help= "Low pass filter cutoff in absolute frequency (0.0 - 0.5) and is applied to decimated images. (Default - no filtration)" ) parser.add_option( "--aa", type="float", default=0.02, help= "Fall off of the filter. Use default value if user has no clue about falloff (Default value is 0.02)" ) parser.add_option("--CTF", action="store_true", default=False, help="Use CFT correction.(Default is no CTF correction)") #parser.add_option("--MPI" , action="store_true", default=False, help="use MPI version") #parser.add_option("--radiuspca", type="int" , default=-1 , help="radius for PCA" ) #parser.add_option("--iter", type="int" , default=40 , help="maximum number of iterations (stop criterion of reconstruction process)" ) #parser.add_option("--abs", type="float" , default=0.0 , help="minimum average absolute change of voxels' values (stop criterion of reconstruction process)" ) #parser.add_option("--squ", type="float" , default=0.0 , help="minimum average squared change of voxels' values (stop criterion of reconstruction process)" ) parser.add_option( "--VAR", action="store_true", default=False, help="Stack of input consists of 2D variances (Default False)") parser.add_option( "--decimate", type="float", default=0.25, help="Image decimate rate, a number less than 1. (Default is 0.25)") parser.add_option( "--window", type="int", default=0, help= "Target image size relative to original image size. (Default value is zero.)" ) #parser.add_option("--SND", action="store_true", default=False, help="compute squared normalized differences (Default False)") #parser.add_option("--nvec", type="int" , default=0 , help="Number of eigenvectors, (Default = 0 meaning no PCA calculated)") parser.add_option( "--symmetrize", action="store_true", default=False, help="Prepare input stack for handling symmetry (Default False)") parser.add_option("--overhead", type="float", default=0.5, help="python overhead per CPU.") (options, args) = parser.parse_args() ##### from mpi import mpi_comm_rank, mpi_comm_size, mpi_recv, MPI_COMM_WORLD from mpi import mpi_barrier, mpi_reduce, mpi_bcast, mpi_send, MPI_FLOAT, MPI_SUM, MPI_INT, MPI_MAX #from mpi import * from sp_applications import MPI_start_end from sp_reconstruction import recons3d_em, recons3d_em_MPI from sp_reconstruction import recons3d_4nn_MPI, recons3d_4nn_ctf_MPI from sp_utilities import print_begin_msg, print_end_msg, print_msg from sp_utilities import read_text_row, get_image, get_im, wrap_mpi_send, wrap_mpi_recv from sp_utilities import bcast_EMData_to_all, bcast_number_to_all from sp_utilities import get_symt # This is code for handling symmetries by the above program. To be incorporated. PAP 01/27/2015 from EMAN2db import db_open_dict # Set up global variables related to bdb cache if sp_global_def.CACHE_DISABLE: from sp_utilities import disable_bdb_cache disable_bdb_cache() # Set up global variables related to ERROR function sp_global_def.BATCH = True # detect if program is running under MPI RUNNING_UNDER_MPI = "OMPI_COMM_WORLD_SIZE" in os.environ if RUNNING_UNDER_MPI: sp_global_def.MPI = True if options.output_dir == "./": current_output_dir = os.path.abspath(options.output_dir) else: current_output_dir = options.output_dir if options.symmetrize: if mpi.mpi_comm_size(MPI_COMM_WORLD) > 1: ERROR("Cannot use more than one CPU for symmetry preparation") if not os.path.exists(current_output_dir): os.makedirs(current_output_dir) sp_global_def.write_command(current_output_dir) from sp_logger import Logger, BaseLogger_Files if os.path.exists(os.path.join(current_output_dir, "log.txt")): os.remove(os.path.join(current_output_dir, "log.txt")) log_main = Logger(BaseLogger_Files()) log_main.prefix = os.path.join(current_output_dir, "./") instack = args[0] sym = options.sym.lower() if (sym == "c1"): ERROR("There is no need to symmetrize stack for C1 symmetry") line = "" for a in sys.argv: line += " " + a log_main.add(line) if (instack[:4] != "bdb:"): #if output_dir =="./": stack = "bdb:data" stack = "bdb:" + current_output_dir + "/data" delete_bdb(stack) junk = cmdexecute("sp_cpy.py " + instack + " " + stack) else: stack = instack qt = EMUtil.get_all_attributes(stack, 'xform.projection') na = len(qt) ts = get_symt(sym) ks = len(ts) angsa = [None] * na for k in range(ks): #Qfile = "Q%1d"%k #if options.output_dir!="./": Qfile = os.path.join(options.output_dir,"Q%1d"%k) Qfile = os.path.join(current_output_dir, "Q%1d" % k) #delete_bdb("bdb:Q%1d"%k) delete_bdb("bdb:" + Qfile) #junk = cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:Q%1d"%k) junk = cmdexecute("e2bdb.py " + stack + " --makevstack=bdb:" + Qfile) #DB = db_open_dict("bdb:Q%1d"%k) DB = db_open_dict("bdb:" + Qfile) for i in range(na): ut = qt[i] * ts[k] DB.set_attr(i, "xform.projection", ut) #bt = ut.get_params("spider") #angsa[i] = [round(bt["phi"],3)%360.0, round(bt["theta"],3)%360.0, bt["psi"], -bt["tx"], -bt["ty"]] #write_text_row(angsa, 'ptsma%1d.txt'%k) #junk = cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:Q%1d"%k) #junk = cmdexecute("sxheader.py bdb:Q%1d --params=xform.projection --import=ptsma%1d.txt"%(k,k)) DB.close() #if options.output_dir =="./": delete_bdb("bdb:sdata") delete_bdb("bdb:" + current_output_dir + "/" + "sdata") #junk = cmdexecute("e2bdb.py . --makevstack=bdb:sdata --filt=Q") sdata = "bdb:" + current_output_dir + "/" + "sdata" sxprint(sdata) junk = cmdexecute("e2bdb.py " + current_output_dir + " --makevstack=" + sdata + " --filt=Q") #junk = cmdexecute("ls EMAN2DB/sdata*") #a = get_im("bdb:sdata") a = get_im(sdata) a.set_attr("variabilitysymmetry", sym) #a.write_image("bdb:sdata") a.write_image(sdata) else: from sp_fundamentals import window2d myid = mpi_comm_rank(MPI_COMM_WORLD) number_of_proc = mpi_comm_size(MPI_COMM_WORLD) main_node = 0 shared_comm = mpi_comm_split_type(MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL) myid_on_node = mpi_comm_rank(shared_comm) no_of_processes_per_group = mpi_comm_size(shared_comm) masters_from_groups_vs_everything_else_comm = mpi_comm_split( MPI_COMM_WORLD, main_node == myid_on_node, myid_on_node) color, no_of_groups, balanced_processor_load_on_nodes = get_colors_and_subsets(main_node, MPI_COMM_WORLD, myid, \ shared_comm, myid_on_node, masters_from_groups_vs_everything_else_comm) overhead_loading = options.overhead * number_of_proc #memory_per_node = options.memory_per_node #if memory_per_node == -1.: memory_per_node = 2.*no_of_processes_per_group keepgoing = 1 current_window = options.window current_decimate = options.decimate if len(args) == 1: stack = args[0] else: sxprint("Usage: " + usage) sxprint("Please run \'" + progname + " -h\' for detailed options") ERROR( "Invalid number of parameters used. Please see usage information above." ) return t0 = time() # obsolete flags options.MPI = True #options.nvec = 0 options.radiuspca = -1 options.iter = 40 options.abs = 0.0 options.squ = 0.0 if options.fl > 0.0 and options.aa == 0.0: ERROR("Fall off has to be given for the low-pass filter", myid=myid) #if options.VAR and options.SND: # ERROR( "Only one of var and SND can be set!",myid=myid ) if options.VAR and (options.ave2D or options.ave3D or options.var2D): ERROR( "When VAR is set, the program cannot output ave2D, ave3D or var2D", myid=myid) #if options.SND and (options.ave2D or options.ave3D): # ERROR( "When SND is set, the program cannot output ave2D or ave3D", myid=myid ) #if options.nvec > 0 : # ERROR( "PCA option not implemented", myid=myid ) #if options.nvec > 0 and options.ave3D == None: # ERROR( "When doing PCA analysis, one must set ave3D", myid=myid ) if current_decimate > 1.0 or current_decimate < 0.0: ERROR("Decimate rate should be a value between 0.0 and 1.0", myid=myid) if current_window < 0.0: ERROR("Target window size should be always larger than zero", myid=myid) if myid == main_node: img = get_image(stack, 0) nx = img.get_xsize() ny = img.get_ysize() if (min(nx, ny) < current_window): keepgoing = 0 keepgoing = bcast_number_to_all(keepgoing, main_node, MPI_COMM_WORLD) if keepgoing == 0: ERROR( "The target window size cannot be larger than the size of decimated image", myid=myid) import string options.sym = options.sym.lower() # if global_def.CACHE_DISABLE: # from utilities import disable_bdb_cache # disable_bdb_cache() # global_def.BATCH = True if myid == main_node: if not os.path.exists(current_output_dir): os.makedirs(current_output_dir ) # Never delete output_dir in the program! img_per_grp = options.img_per_grp #nvec = options.nvec radiuspca = options.radiuspca from sp_logger import Logger, BaseLogger_Files #if os.path.exists(os.path.join(options.output_dir, "log.txt")): os.remove(os.path.join(options.output_dir, "log.txt")) log_main = Logger(BaseLogger_Files()) log_main.prefix = os.path.join(current_output_dir, "./") if myid == main_node: line = "" for a in sys.argv: line += " " + a log_main.add(line) log_main.add("-------->>>Settings given by all options<<<-------") log_main.add("Symmetry : %s" % options.sym) log_main.add("Input stack : %s" % stack) log_main.add("Output_dir : %s" % current_output_dir) if options.ave3D: log_main.add("Ave3d : %s" % options.ave3D) if options.var3D: log_main.add("Var3d : %s" % options.var3D) if options.ave2D: log_main.add("Ave2D : %s" % options.ave2D) if options.var2D: log_main.add("Var2D : %s" % options.var2D) if options.VAR: log_main.add("VAR : True") else: log_main.add("VAR : False") if options.CTF: log_main.add("CTF correction : True ") else: log_main.add("CTF correction : False ") log_main.add("Image per group : %5d" % options.img_per_grp) log_main.add("Image decimate rate : %4.3f" % current_decimate) log_main.add("Low pass filter : %4.3f" % options.fl) current_fl = options.fl if current_fl == 0.0: current_fl = 0.5 log_main.add( "Current low pass filter is equivalent to cutoff frequency %4.3f for original image size" % round((current_fl * current_decimate), 3)) log_main.add("Window size : %5d " % current_window) log_main.add("sx3dvariability begins") symbaselen = 0 if myid == main_node: nima = EMUtil.get_image_count(stack) img = get_image(stack) nx = img.get_xsize() ny = img.get_ysize() nnxo = nx nnyo = ny if options.sym != "c1": imgdata = get_im(stack) try: i = imgdata.get_attr("variabilitysymmetry").lower() if (i != options.sym): ERROR( "The symmetry provided does not agree with the symmetry of the input stack", myid=myid) except: ERROR( "Input stack is not prepared for symmetry, please follow instructions", myid=myid) from sp_utilities import get_symt i = len(get_symt(options.sym)) if ((nima / i) * i != nima): ERROR( "The length of the input stack is incorrect for symmetry processing", myid=myid) symbaselen = nima / i else: symbaselen = nima else: nima = 0 nx = 0 ny = 0 nnxo = 0 nnyo = 0 nima = bcast_number_to_all(nima) nx = bcast_number_to_all(nx) ny = bcast_number_to_all(ny) nnxo = bcast_number_to_all(nnxo) nnyo = bcast_number_to_all(nnyo) if current_window > max(nx, ny): ERROR("Window size is larger than the original image size") if current_decimate == 1.: if current_window != 0: nx = current_window ny = current_window else: if current_window == 0: nx = int(nx * current_decimate + 0.5) ny = int(ny * current_decimate + 0.5) else: nx = int(current_window * current_decimate + 0.5) ny = nx symbaselen = bcast_number_to_all(symbaselen) # check FFT prime number from sp_fundamentals import smallprime is_fft_friendly = (nx == smallprime(nx)) if not is_fft_friendly: if myid == main_node: log_main.add( "The target image size is not a product of small prime numbers" ) log_main.add("Program adjusts the input settings!") ### two cases if current_decimate == 1.: nx = smallprime(nx) ny = nx current_window = nx # update if myid == main_node: log_main.add("The window size is updated to %d." % current_window) else: if current_window == 0: nx = smallprime(int(nx * current_decimate + 0.5)) current_decimate = float(nx) / nnxo ny = nx if (myid == main_node): log_main.add("The decimate rate is updated to %f." % current_decimate) else: nx = smallprime( int(current_window * current_decimate + 0.5)) ny = nx current_window = int(nx / current_decimate + 0.5) if (myid == main_node): log_main.add("The window size is updated to %d." % current_window) if myid == main_node: log_main.add("The target image size is %d" % nx) if radiuspca == -1: radiuspca = nx / 2 - 2 if myid == main_node: log_main.add("%-70s: %d\n" % ("Number of projection", nima)) img_begin, img_end = MPI_start_end(nima, number_of_proc, myid) """ if options.SND: from sp_projection import prep_vol, prgs from sp_statistics import im_diff from sp_utilities import get_im, model_circle, get_params_proj, set_params_proj from sp_utilities import get_ctf, generate_ctf from sp_filter import filt_ctf imgdata = EMData.read_images(stack, range(img_begin, img_end)) if options.CTF: vol = recons3d_4nn_ctf_MPI(myid, imgdata, 1.0, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) else: vol = recons3d_4nn_MPI(myid, imgdata, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) bcast_EMData_to_all(vol, myid) volft, kb = prep_vol(vol) mask = model_circle(nx/2-2, nx, ny) varList = [] for i in xrange(img_begin, img_end): phi, theta, psi, s2x, s2y = get_params_proj(imgdata[i-img_begin]) ref_prj = prgs(volft, kb, [phi, theta, psi, -s2x, -s2y]) if options.CTF: ctf_params = get_ctf(imgdata[i-img_begin]) ref_prj = filt_ctf(ref_prj, generate_ctf(ctf_params)) diff, A, B = im_diff(ref_prj, imgdata[i-img_begin], mask) diff2 = diff*diff set_params_proj(diff2, [phi, theta, psi, s2x, s2y]) varList.append(diff2) mpi_barrier(MPI_COMM_WORLD) """ if options.VAR: # 2D variance images have no shifts #varList = EMData.read_images(stack, range(img_begin, img_end)) from EMAN2 import Region for index_of_particle in range(img_begin, img_end): image = get_im(stack, index_of_proj) if current_window > 0: varList.append( fdecimate( window2d(image, current_window, current_window), nx, ny)) else: varList.append(fdecimate(image, nx, ny)) else: from sp_utilities import bcast_number_to_all, bcast_list_to_all, send_EMData, recv_EMData from sp_utilities import set_params_proj, get_params_proj, params_3D_2D, get_params2D, set_params2D, compose_transform2 from sp_utilities import model_blank, nearest_proj, model_circle, write_text_row, wrap_mpi_gatherv from sp_applications import pca from sp_statistics import avgvar, avgvar_ctf, ccc from sp_filter import filt_tanl from sp_morphology import threshold, square_root from sp_projection import project, prep_vol, prgs from sets import Set from sp_utilities import wrap_mpi_recv, wrap_mpi_bcast, wrap_mpi_send import numpy as np if myid == main_node: t1 = time() proj_angles = [] aveList = [] tab = EMUtil.get_all_attributes(stack, 'xform.projection') for i in range(nima): t = tab[i].get_params('spider') phi = t['phi'] theta = t['theta'] psi = t['psi'] x = theta if x > 90.0: x = 180.0 - x x = x * 10000 + psi proj_angles.append([x, t['phi'], t['theta'], t['psi'], i]) t2 = time() log_main.add( "%-70s: %d\n" % ("Number of neighboring projections", img_per_grp)) log_main.add("...... Finding neighboring projections\n") log_main.add("Number of images per group: %d" % img_per_grp) log_main.add("Now grouping projections") proj_angles.sort() proj_angles_list = np.full((nima, 4), 0.0, dtype=np.float32) for i in range(nima): proj_angles_list[i][0] = proj_angles[i][1] proj_angles_list[i][1] = proj_angles[i][2] proj_angles_list[i][2] = proj_angles[i][3] proj_angles_list[i][3] = proj_angles[i][4] else: proj_angles_list = 0 proj_angles_list = wrap_mpi_bcast(proj_angles_list, main_node, MPI_COMM_WORLD) proj_angles = [] for i in range(nima): proj_angles.append([ proj_angles_list[i][0], proj_angles_list[i][1], proj_angles_list[i][2], int(proj_angles_list[i][3]) ]) del proj_angles_list proj_list, mirror_list = nearest_proj(proj_angles, img_per_grp, range(img_begin, img_end)) all_proj = Set() for im in proj_list: for jm in im: all_proj.add(proj_angles[jm][3]) all_proj = list(all_proj) index = {} for i in range(len(all_proj)): index[all_proj[i]] = i mpi_barrier(MPI_COMM_WORLD) if myid == main_node: log_main.add("%-70s: %.2f\n" % ("Finding neighboring projections lasted [s]", time() - t2)) log_main.add("%-70s: %d\n" % ("Number of groups processed on the main node", len(proj_list))) log_main.add("Grouping projections took: %12.1f [m]" % ((time() - t2) / 60.)) log_main.add("Number of groups on main node: ", len(proj_list)) mpi_barrier(MPI_COMM_WORLD) if myid == main_node: log_main.add("...... Calculating the stack of 2D variances \n") # Memory estimation. There are two memory consumption peaks # peak 1. Compute ave, var; # peak 2. Var volume reconstruction; # proj_params = [0.0]*(nima*5) aveList = [] varList = [] #if nvec > 0: eigList = [[] for i in range(nvec)] dnumber = len( all_proj) # all neighborhood set for assigned to myid pnumber = len(proj_list) * 2. + img_per_grp # aveList and varList tnumber = dnumber + pnumber vol_size2 = nx**3 * 4. * 8 / 1.e9 vol_size1 = 2. * nnxo**3 * 4. * 8 / 1.e9 proj_size = nnxo * nnyo * len( proj_list) * 4. * 2. / 1.e9 # both aveList and varList orig_data_size = nnxo * nnyo * 4. * tnumber / 1.e9 reduced_data_size = nx * nx * 4. * tnumber / 1.e9 full_data = np.full((number_of_proc, 2), -1., dtype=np.float16) full_data[myid] = orig_data_size, reduced_data_size if myid != main_node: wrap_mpi_send(full_data, main_node, MPI_COMM_WORLD) if myid == main_node: for iproc in range(number_of_proc): if iproc != main_node: dummy = wrap_mpi_recv(iproc, MPI_COMM_WORLD) full_data[np.where(dummy > -1)] = dummy[np.where( dummy > -1)] del dummy mpi_barrier(MPI_COMM_WORLD) full_data = wrap_mpi_bcast(full_data, main_node, MPI_COMM_WORLD) # find the CPU with heaviest load minindx = np.argsort(full_data, 0) heavy_load_myid = minindx[-1][1] total_mem = sum(full_data) if myid == main_node: if current_window == 0: log_main.add( "Nx: current image size = %d. Decimated by %f from %d" % (nx, current_decimate, nnxo)) else: log_main.add( "Nx: current image size = %d. Windowed to %d, and decimated by %f from %d" % (nx, current_window, current_decimate, nnxo)) log_main.add("Nproj: number of particle images.") log_main.add("Navg: number of 2D average images.") log_main.add("Nvar: number of 2D variance images.") log_main.add( "Img_per_grp: user defined image per group for averaging = %d" % img_per_grp) log_main.add( "Overhead: total python overhead memory consumption = %f" % overhead_loading) log_main.add("Total memory) = 4.0*nx^2*(nproj + navg +nvar+ img_per_grp)/1.0e9 + overhead: %12.3f [GB]"%\ (total_mem[1] + overhead_loading)) del full_data mpi_barrier(MPI_COMM_WORLD) if myid == heavy_load_myid: log_main.add( "Begin reading and preprocessing images on processor. Wait... " ) ttt = time() #imgdata = EMData.read_images(stack, all_proj) imgdata = [None for im in range(len(all_proj))] for index_of_proj in range(len(all_proj)): #image = get_im(stack, all_proj[index_of_proj]) if (current_window > 0): imgdata[index_of_proj] = fdecimate( window2d(get_im(stack, all_proj[index_of_proj]), current_window, current_window), nx, ny) else: imgdata[index_of_proj] = fdecimate( get_im(stack, all_proj[index_of_proj]), nx, ny) if (current_decimate > 0.0 and options.CTF): ctf = imgdata[index_of_proj].get_attr("ctf") ctf.apix = ctf.apix / current_decimate imgdata[index_of_proj].set_attr("ctf", ctf) if myid == heavy_load_myid and index_of_proj % 100 == 0: log_main.add(" ...... %6.2f%% " % (index_of_proj / float(len(all_proj)) * 100.)) mpi_barrier(MPI_COMM_WORLD) if myid == heavy_load_myid: log_main.add("All_proj preprocessing cost %7.2f m" % ((time() - ttt) / 60.)) log_main.add("Wait untill reading on all CPUs done...") ''' imgdata2 = EMData.read_images(stack, range(img_begin, img_end)) if options.fl > 0.0: for k in xrange(len(imgdata2)): imgdata2[k] = filt_tanl(imgdata2[k], options.fl, options.aa) if options.CTF: vol = recons3d_4nn_ctf_MPI(myid, imgdata2, 1.0, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) else: vol = recons3d_4nn_MPI(myid, imgdata2, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) if myid == main_node: vol.write_image("vol_ctf.hdf") print_msg("Writing to the disk volume reconstructed from averages as : %s\n"%("vol_ctf.hdf")) del vol, imgdata2 mpi_barrier(MPI_COMM_WORLD) ''' from sp_applications import prepare_2d_forPCA from sp_utilities import model_blank from EMAN2 import Transform if not options.no_norm: mask = model_circle(nx / 2 - 2, nx, nx) if options.CTF: from sp_utilities import pad from sp_filter import filt_ctf from sp_filter import filt_tanl if myid == heavy_load_myid: log_main.add("Start computing 2D aveList and varList. Wait...") ttt = time() inner = nx // 2 - 4 outer = inner + 2 xform_proj_for_2D = [None for i in range(len(proj_list))] for i in range(len(proj_list)): ki = proj_angles[proj_list[i][0]][3] if ki >= symbaselen: continue mi = index[ki] dpar = Util.get_transform_params(imgdata[mi], "xform.projection", "spider") phiM, thetaM, psiM, s2xM, s2yM = dpar["phi"], dpar[ "theta"], dpar[ "psi"], -dpar["tx"] * current_decimate, -dpar[ "ty"] * current_decimate grp_imgdata = [] for j in range(img_per_grp): mj = index[proj_angles[proj_list[i][j]][3]] cpar = Util.get_transform_params(imgdata[mj], "xform.projection", "spider") alpha, sx, sy, mirror = params_3D_2D_NEW( cpar["phi"], cpar["theta"], cpar["psi"], -cpar["tx"] * current_decimate, -cpar["ty"] * current_decimate, mirror_list[i][j]) if thetaM <= 90: if mirror == 0: alpha, sx, sy, scale = compose_transform2( alpha, sx, sy, 1.0, phiM - cpar["phi"], 0.0, 0.0, 1.0) else: alpha, sx, sy, scale = compose_transform2( alpha, sx, sy, 1.0, 180 - (phiM - cpar["phi"]), 0.0, 0.0, 1.0) else: if mirror == 0: alpha, sx, sy, scale = compose_transform2( alpha, sx, sy, 1.0, -(phiM - cpar["phi"]), 0.0, 0.0, 1.0) else: alpha, sx, sy, scale = compose_transform2( alpha, sx, sy, 1.0, -(180 - (phiM - cpar["phi"])), 0.0, 0.0, 1.0) imgdata[mj].set_attr( "xform.align2d", Transform({ "type": "2D", "alpha": alpha, "tx": sx, "ty": sy, "mirror": mirror, "scale": 1.0 })) grp_imgdata.append(imgdata[mj]) if not options.no_norm: for k in range(img_per_grp): ave, std, minn, maxx = Util.infomask( grp_imgdata[k], mask, False) grp_imgdata[k] -= ave grp_imgdata[k] /= std if options.fl > 0.0: for k in range(img_per_grp): grp_imgdata[k] = filt_tanl(grp_imgdata[k], options.fl, options.aa) # Because of background issues, only linear option works. if options.CTF: ave, var = aves_wiener(grp_imgdata, SNR=1.0e5, interpolation_method="linear") else: ave, var = ave_var(grp_imgdata) # Switch to std dev # threshold is not really needed,it is just in case due to numerical accuracy something turns out negative. var = square_root(threshold(var)) set_params_proj(ave, [phiM, thetaM, 0.0, 0.0, 0.0]) set_params_proj(var, [phiM, thetaM, 0.0, 0.0, 0.0]) aveList.append(ave) varList.append(var) xform_proj_for_2D[i] = [phiM, thetaM, 0.0, 0.0, 0.0] ''' if nvec > 0: eig = pca(input_stacks=grp_imgdata, subavg="", mask_radius=radiuspca, nvec=nvec, incore=True, shuffle=False, genbuf=True) for k in range(nvec): set_params_proj(eig[k], [phiM, thetaM, 0.0, 0.0, 0.0]) eigList[k].append(eig[k]) """ if myid == 0 and i == 0: for k in xrange(nvec): eig[k].write_image("eig.hdf", k) """ ''' if (myid == heavy_load_myid) and (i % 100 == 0): log_main.add(" ......%6.2f%% " % (i / float(len(proj_list)) * 100.)) del imgdata, grp_imgdata, cpar, dpar, all_proj, proj_angles, index if not options.no_norm: del mask if myid == main_node: del tab # At this point, all averages and variances are computed mpi_barrier(MPI_COMM_WORLD) if (myid == heavy_load_myid): log_main.add("Computing aveList and varList took %12.1f [m]" % ((time() - ttt) / 60.)) xform_proj_for_2D = wrap_mpi_gatherv(xform_proj_for_2D, main_node, MPI_COMM_WORLD) if (myid == main_node): write_text_row([str(entry) for entry in xform_proj_for_2D], os.path.join(current_output_dir, "params.txt")) del xform_proj_for_2D mpi_barrier(MPI_COMM_WORLD) if options.ave2D: from sp_fundamentals import fpol from sp_applications import header if myid == main_node: log_main.add("Compute ave2D ... ") km = 0 for i in range(number_of_proc): if i == main_node: for im in range(len(aveList)): aveList[im].write_image( os.path.join(current_output_dir, options.ave2D), km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nl = int(nl[0]) for im in range(nl): ave = recv_EMData(i, im + i + 70000) """ nm = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nm = int(nm[0]) members = mpi_recv(nm, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('members', map(int, members)) members = mpi_recv(nm, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('pix_err', map(float, members)) members = mpi_recv(3, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('refprojdir', map(float, members)) """ tmpvol = fpol(ave, nx, nx, 1) tmpvol.write_image( os.path.join(current_output_dir, options.ave2D), km) km += 1 else: mpi_send(len(aveList), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) for im in range(len(aveList)): send_EMData(aveList[im], main_node, im + myid + 70000) """ members = aveList[im].get_attr('members') mpi_send(len(members), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) mpi_send(members, len(members), MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) members = aveList[im].get_attr('pix_err') mpi_send(members, len(members), MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) try: members = aveList[im].get_attr('refprojdir') mpi_send(members, 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) except: mpi_send([-999.0,-999.0,-999.0], 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) """ if myid == main_node: header(os.path.join(current_output_dir, options.ave2D), params='xform.projection', fimport=os.path.join(current_output_dir, "params.txt")) mpi_barrier(MPI_COMM_WORLD) if options.ave3D: from sp_fundamentals import fpol t5 = time() if myid == main_node: log_main.add("Reconstruct ave3D ... ") ave3D = recons3d_4nn_MPI(myid, aveList, symmetry=options.sym, npad=options.npad) bcast_EMData_to_all(ave3D, myid) if myid == main_node: if current_decimate != 1.0: ave3D = resample(ave3D, 1. / current_decimate) ave3D = fpol(ave3D, nnxo, nnxo, nnxo) # always to the orignal image size set_pixel_size(ave3D, 1.0) ave3D.write_image( os.path.join(current_output_dir, options.ave3D)) log_main.add("Ave3D reconstruction took %12.1f [m]" % ((time() - t5) / 60.0)) log_main.add("%-70s: %s\n" % ("The reconstructed ave3D is saved as ", options.ave3D)) mpi_barrier(MPI_COMM_WORLD) del ave, var, proj_list, stack, alpha, sx, sy, mirror, aveList ''' if nvec > 0: for k in range(nvec): if myid == main_node:log_main.add("Reconstruction eigenvolumes", k) cont = True ITER = 0 mask2d = model_circle(radiuspca, nx, nx) while cont: #print "On node %d, iteration %d"%(myid, ITER) eig3D = recons3d_4nn_MPI(myid, eigList[k], symmetry=options.sym, npad=options.npad) bcast_EMData_to_all(eig3D, myid, main_node) if options.fl > 0.0: eig3D = filt_tanl(eig3D, options.fl, options.aa) if myid == main_node: eig3D.write_image(os.path.join(options.outpout_dir, "eig3d_%03d.hdf"%(k, ITER))) Util.mul_img( eig3D, model_circle(radiuspca, nx, nx, nx) ) eig3Df, kb = prep_vol(eig3D) del eig3D cont = False icont = 0 for l in range(len(eigList[k])): phi, theta, psi, s2x, s2y = get_params_proj(eigList[k][l]) proj = prgs(eig3Df, kb, [phi, theta, psi, s2x, s2y]) cl = ccc(proj, eigList[k][l], mask2d) if cl < 0.0: icont += 1 cont = True eigList[k][l] *= -1.0 u = int(cont) u = mpi_reduce([u], 1, MPI_INT, MPI_MAX, main_node, MPI_COMM_WORLD) icont = mpi_reduce([icont], 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) if myid == main_node: u = int(u[0]) log_main.add(" Eigenvector: ",k," number changed ",int(icont[0])) else: u = 0 u = bcast_number_to_all(u, main_node) cont = bool(u) ITER += 1 del eig3Df, kb mpi_barrier(MPI_COMM_WORLD) del eigList, mask2d ''' if options.ave3D: del ave3D if options.var2D: from sp_fundamentals import fpol from sp_applications import header if myid == main_node: log_main.add("Compute var2D...") km = 0 for i in range(number_of_proc): if i == main_node: for im in range(len(varList)): tmpvol = fpol(varList[im], nx, nx, 1) tmpvol.write_image( os.path.join(current_output_dir, options.var2D), km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nl = int(nl[0]) for im in range(nl): ave = recv_EMData(i, im + i + 70000) tmpvol = fpol(ave, nx, nx, 1) tmpvol.write_image( os.path.join(current_output_dir, options.var2D), km) km += 1 else: mpi_send(len(varList), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) for im in range(len(varList)): send_EMData(varList[im], main_node, im + myid + 70000) # What with the attributes?? mpi_barrier(MPI_COMM_WORLD) if myid == main_node: from sp_applications import header header(os.path.join(current_output_dir, options.var2D), params='xform.projection', fimport=os.path.join(current_output_dir, "params.txt")) mpi_barrier(MPI_COMM_WORLD) if options.var3D: if myid == main_node: log_main.add("Reconstruct var3D ...") t6 = time() # radiusvar = options.radius # if( radiusvar < 0 ): radiusvar = nx//2 -3 res = recons3d_4nn_MPI(myid, varList, symmetry=options.sym, npad=options.npad) #res = recons3d_em_MPI(varList, vol_stack, options.iter, radiusvar, options.abs, True, options.sym, options.squ) if myid == main_node: from sp_fundamentals import fpol if current_decimate != 1.0: res = resample(res, 1. / current_decimate) res = fpol(res, nnxo, nnxo, nnxo) set_pixel_size(res, 1.0) res.write_image(os.path.join(current_output_dir, options.var3D)) log_main.add( "%-70s: %s\n" % ("The reconstructed var3D is saved as ", options.var3D)) log_main.add("Var3D reconstruction took %f12.1 [m]" % ((time() - t6) / 60.0)) log_main.add("Total computation time %f12.1 [m]" % ((time() - t0) / 60.0)) log_main.add("sx3dvariability finishes") if RUNNING_UNDER_MPI: sp_global_def.MPI = False sp_global_def.BATCH = False