def train_translation_matrix(source_file, target_file, dict_file, out_file):
    """Trains a transltion matrix between the source and target languages, using the words in dict_file as anchor
    points and writing the translation matrix to out_file

    Note that the source language file and target language file must be in the word2vec C ASCII format

    :param source_file: The name of the source language file
    :param target_file: The name of the target language file
    :param dict_file: The name of the file with the bilingual dictionary
    :param out_file: The name of the file to write the translation matrix to
    """
    log.info("Reading the training data")
    train_data = read_dict(dict_file)

    #we only need to load the vectors for the words in the training data
    #semantic spaces contain additional words
    source_words, target_words = zip(*train_data)

    log.info("Reading: %s" % source_file)
    source_sp = Space.build(source_file, set(source_words))
    source_sp.normalize()

    log.info("Reading: %s" % target_file)
    target_sp = Space.build(target_file, set(target_words))
    target_sp.normalize()

    log.debug('Words in the source space: %s' % source_sp.row2id)
    log.debug('Words in the target space: %s' % target_sp.row2id)

    log.info("Learning the translation matrix")
    log.info("Training data: %s" % str(train_data))
    tm = train_tm(source_sp, target_sp, train_data)

    log.info("Printing the translation matrix")
    np.savetxt(out_file, tm)
Exemple #2
0
def train_wrapper(seed_fn, source_fn, target_fn, reverse=False, mx_path=None,
                  train_size=5000):
    logging.info("Training...")
    seed_trans = read_dict(seed_fn, reverse=reverse)

    #we only need to load the vectors for the words in the training data
    #semantic spaces contain additional words
    source_words = set(seed_trans.iterkeys())
    target_words = set().union(*seed_trans.itervalues())

    source_sp = Space.build(source_fn, lexicon=source_words)
    source_sp.normalize()

    target_sp = Space.build(target_fn, lexicon=target_words)
    target_sp.normalize()

    logging.info("Learning the translation matrix")
    tm, used_for_train = train_tm(source_sp, target_sp, seed_trans, train_size)

    mx_path = default_output_fn(mx_path, seed_fn, source_fn, target_fn,)
    logging.info("Saving the translation matrix to {}".format(mx_path))
    np.save('{}.npy'.format(mx_path), tm)
    pickle.dump(used_for_train, open('{}.train_wds'.format(mx_path),
                                     mode='w'))

    return tm, used_for_train
Exemple #3
0
    def build_src_wrapper(self, source_file, test_wpairs):
        """
        In the _source_ space, we only need to load vectors for the words in
        test.  Semantic spaces may contain additional words.
        All words in the _target_ space are used as the search space
        """
        source_words = set(test_wpairs.iterkeys())
        if self.additional:
            #read all the words in the space
            lexicon = set(np.loadtxt(source_file, skiprows=1, dtype=str,
                                        comments=None, usecols=(0,)).flatten())
            #the max number of additional+test elements is bounded by the size
            #of the lexicon
            self.additional = min(self.additional, len(lexicon) - len(source_words))
            random.seed(100)
            logging.info("Sampling {} additional elements".format(self.additional))
            # additional lexicon:
            lexicon = random.sample(list(lexicon.difference(source_words)),
                                    self.additional)

            #load the source space
            source_sp = Space.build(source_file,
                                    lexicon=source_words.union(set(lexicon)),
                                    max_rows=1000)
        else:
            source_sp = Space.build(source_file, lexicon=source_words,
                                    max_rows=1000) 
        source_sp.normalize()
        return source_sp
def train_translation_matrix(source_file, target_file, dict_file, out_file):
    """Trains a transltion matrix between the source and target languages, using the words in dict_file as anchor
    points and writing the translation matrix to out_file

    Note that the source language file and target language file must be in the word2vec C ASCII format

    :param source_file: The name of the source language file
    :param target_file: The name of the target language file
    :param dict_file: The name of the file with the bilingual dictionary
    :param out_file: The name of the file to write the translation matrix to
    """
    log.info("Reading the training data")
    train_data = read_dict(dict_file)

    #we only need to load the vectors for the words in the training data
    #semantic spaces contain additional words
    source_words, target_words = zip(*train_data)

    log.info("Reading: %s" % source_file)
    source_sp = Space.build(source_file, set(source_words))
    source_sp.normalize()

    log.info("Reading: %s" % target_file)
    target_sp = Space.build(target_file, set(target_words))
    target_sp.normalize()

    log.debug('Words in the source space: %s' % source_sp.row2id)
    log.debug('Words in the target space: %s' % target_sp.row2id)

    log.info("Learning the translation matrix")
    log.info("Training data: %s" % str(train_data))
    tm = train_tm(source_sp, target_sp, train_data)

    log.info("Printing the translation matrix")
    np.savetxt(out_file, tm)
Exemple #5
0
    def test_wrapper(self):
        self.load_tr_mx()

        logging.info('The denominator of precision {} OOV words'.format(
                          'includes' if self.args.coverage 
                          else "doesn't include"))
        test_wpairs = read_dict(self.args.seed_fn, reverse=self.args.reverse,
                                needed=1000 if self.args.coverage else -1,
                                exclude=self.exclude_from_test)

        source_sp = self.build_src_wrapper(self.args.source_fn, test_wpairs)

        target_sp = Space.build(self.args.target_fn)
        target_sp.normalize()

        test_wpairs, _ = get_invocab_trans(source_sp, target_sp,
                                              test_wpairs, needed=1000)

        """
        #turn test data into a dictionary (a word can have mutiple translation)
        gold = collections.defaultdict(set, test_wpairs)
        for sr, tg in test_wpairs:
            gold[sr].add(tg)
            """

        logging.info(
            "Mapping all the elements loaded in the source space")
        mapped_source_sp = apply_tm(source_sp, self.tr_mx)
        if hasattr(self.args, 'mapped_vecs') and self.args.mapped_vecs:
            logging.info("Printing mapped vectors: %s" % self.args.mapped_vecs)
            np.savetxt("%s.vecs.txt" % self.args.mapped_vecs, mapped_source_sp.mat)
            np.savetxt("%s.wds.txt" %
                       self.args.mapped_vecs, mapped_source_sp.id2word, fmt="%s")

        return score(mapped_source_sp, target_sp, test_wpairs, self.additional)
Exemple #6
0
    def build(cls, core_space, **kwargs):
        """
        Reads in data files and extracts the data to construct a semantic space.

        If the data is read in dense format and no columns are provided,
        the column indexing structures are set to empty.

        Args:
            data: file containing the counts
            format: format on the input data file: one of sm/dm
            rows: file containing the row elements. Optional, if not provided,
                extracted from the data file.
            cols: file containing the column elements

        Returns:
            A semantic space build from the input data files.

        Raises:
            ValueError: if one of data/format arguments is missing.
                        if cols is missing and format is "sm"
                        if the input columns provided are not consistent with
                        the shape of the matrix (for "dm" format)

        """

        sp = Space.build(**kwargs)

        mat = sp._cooccurrence_matrix
        id2row = sp.id2row
        row2id = sp.row2id
        return PeripheralSpace(core_space, mat, id2row, row2id)
Exemple #7
0
def main(sys_argv):

    try:
        opts, argv = getopt.getopt(sys_argv[1:], "ho:", ["help", "output="])
    except getopt.GetoptError as err:
        print(str(err))
        usage()
        sys.exit(1)

    out_file = "./tm"
    for opt, val in opts:
        if opt in ("-o", "--output"):
            out_file = val
        elif opt in ("-h", "--help"):
            usage(0)
        else:
            usage(1)

    if len(argv) == 3:
        source_file = argv[1]
        target_file = argv[2]
        dict_file = argv[0]
    else:
        print(str(err))
        usage(1)

    print("Reading the training data")
    train_data = read_dict(dict_file)

    #we only need to load the vectors for the words in the training data
    #semantic spaces contain additional words
    source_words, target_words = zip(*train_data)

    print("Reading: %s" % source_file)
    source_sp = Space.build(source_file, set(source_words))
    source_sp.normalize()

    print("Reading: %s" % target_file)
    target_sp = Space.build(target_file, set(target_words))
    target_sp.normalize()

    print("Learning the translation matrix")
    tm = train_tm(source_sp, target_sp, train_data)

    print("Printing the translation matrix")
    np.savetxt("%s.txt" % out_file, tm)
        test_file = argv[3]
        model = eval(argv[4])
        dict_file = argv[0]
    else:
        print str(err)
        usage(1)

    print "Reading the training data"
    train_data = read_dict(dict_file)
    print train_data
    #we only need to load the vectors for the words in the training data
    #semantic spaces contain additional words
    source_words, target_words = zip(*train_data)

    print "Reading: %s" % source_file
    source_sp = Space.build(source_file, set(source_words))
    source_sp.normalize()

    print "Reading: %s" % target_file
    target_sp = Space.build(target_file, set(target_words))
    target_sp.normalize()

    print "Learning the translation matrix"
    tm = train_tm_model(source_sp, target_sp, train_data, model)

    #print "Printing the translation matrix"
    #np.savetxt("%s.txt" % out_file, tm)

    print "Reading the test data"
    test_data = read_dict(test_file)
Exemple #9
0
    print "Loading the translation matrix"
    tm = np.loadtxt(tm_file)

    print "Reading the test data"
    test_data = read_dict(test_file)

    # in the _source_ space, we only need to load vectors for the words in test.
    # semantic spaces may contain additional words, ALL words in the _target_
    # space are used as the search space
    source_words, _ = zip(*test_data)
    source_words = set(source_words)

    print "Reading: %s" % source_file
    if not additional:
        source_sp = Space.build(source_file, source_words)
    else:
        # read all the words in the space
        lexicon = set(np.loadtxt(source_file, skiprows=1, dtype=str,
                                 comments=None, usecols=(0,)).flatten())
        # the max number of additional+test elements is bounded by the size
        # of the lexicon
        additional = min(additional, len(lexicon) - len(source_words))
        # we sample additional elements that are not already in source_words
        random.seed(100)
        lexicon = random.sample(list(lexicon.difference(source_words)), additional)

        # load the source space
        source_sp = Space.build(source_file, source_words.union(set(lexicon)))

    source_sp.normalize()
Exemple #10
0
        source_file = argv[1]
        target_file = argv[2]
        dict_file = argv[0]
    else:
        print str(err)
        usage(1)

    print "Reading the training data"
    train_data = read_dict(dict_file)
    print train_data
    #we only need to load the vectors for the words in the training data
    #semantic spaces contain additional words
    source_words, target_words = zip(*train_data)

    print "Reading: %s" % source_file
    source_sp = Space.build(source_file, set(source_words))
    source_sp.normalize()

    print "Reading: %s" % target_file
    target_sp = Space.build(target_file, set(target_words))
    target_sp.normalize()

    print "Learning the translation matrix"
    tm = train_tm(source_sp, target_sp, train_data)

    print "Printing the translation matrix"
    np.savetxt("%s.txt" % out_file, tm)


if __name__ == '__main__':
    main(sys.argv)
        target_file = argv[2]
	dict_file = argv[0]
    else:
	print str(err)
	usage(1)


    print "Reading the training data"
    train_data = read_dict(dict_file)

    #we only need to load the vectors for the words in the training data
    #semantic spaces contain additional words
    source_words, target_words = zip(*train_data)

    print "Reading: %s" % source_file
    source_sp = Space.build(source_file, set(source_words))
    source_sp.normalize()

    print "Reading: %s" % target_file
    target_sp = Space.build(target_file, set(target_words))
    target_sp.normalize()

    print "Learning the translation matrix"
    print "Training data: %s" % str(train_data)
    tm = train_tm(source_sp, target_sp, train_data)

    print "Printing the translation matrix"
    np.savetxt("%s.txt" % out_file, tm)


if __name__ == '__main__':
def main(sys_argv):
    try:
        opts, argv = getopt.getopt(sys_argv[1:], "ho:c:l:m:1:2:t:a:v:", [
            "help", "output=", "correction=", "levenshtein=", "matrix=", "1=",
            "2=", "topK=", "alpha=", "verbosity="
        ])
    except getopt.GetoptError as err:
        print(str(err))
        usage()
        sys.exit(1)

    out_file = "./translated_vecs"
    additional = None
    levcosts = {}
    for opt, val in opts:
        # print(opt+'='+val)
        if opt in ("-o", "--ouput"):
            out_file = val
        elif opt in ("-l", "--levenshtein"):
            levcosts = u.readcosts(val)
        elif opt in ("-m", "--matrix"):
            tm_file = val
        elif opt == '-1':
            source_file = val
        elif opt == '-2':
            target_file = val
        elif opt in ("-c", "--correction"):
            try:
                additional = int(val)
            except ValueError:
                print("additional: %s" % val)
                usage(1)
        elif opt in ("-t", "--topK"):
            try:
                u.topK = int(val)
            except ValueError:
                print("topK: %s" % val)
                usage(1)
        elif opt in ("-v", "--verbosity"):
            try:
                u.verbosity = int(val)
            except ValueError:
                print("verbosity: %s" % val)
                usage(1)
        elif opt in ("-a", "--alpha"):
            try:
                u.alpha = float(val)
            except ValueError:
                print("alpha: %s" % val)
                usage(1)
        elif opt in ("-h", "--help"):
            usage(0)
        else:
            print("Unknown option: -%s %s" % (opt, val))
            usage(1)

    if len(argv) == 1:
        test_file = argv[0]
    else:
        print('Unused arguments:')
        print(argv)
        usage(1)

    #if u.verbosity>0: # always log the parameters in the output
    sys.stdout.write(sys_argv[0] + " ")
    for opt, val in opts:
        sys.stdout.write(opt + " " + val + " ")
    print(test_file)

    if u.verbosity > 1:
        print("Loading the translation matrix %s " % tm_file)
    tm = np.loadtxt(tm_file)

    if u.verbosity > 1:
        print("Reading the test data %s " % test_file)
    test_data = u.read_dict(test_file)

    #in the _source_ space, we only need to load vectors for the words in test.
    #semantic spaces may contain additional words, ALL words in the _target_
    #space are used as the search space
    source_words, _ = zip(*test_data)
    source_words = set(source_words)

    if u.verbosity > 1:
        print("Reading: %s" % source_file)

    if not additional:
        source_sp = Space.build(source_file, source_words)
    else:
        #read all the words in the space
        with io.open(source_file, 'r', encoding='utf8') as f:
            lexicon = set([l.split(' ')[0] for l in f])
        # lexicon = set(np.loadtxt(source_file, skiprows=1, dtype=str,
        #                             comments=None, usecols=(0,)).flatten())
        #the max number of additional+test elements is bounded by the size
        #of the lexicon
        additional = min(additional, len(lexicon) - len(source_words))
        #we sample additional elements that are not already in source_words
        random.seed(100)
        if additional > 0:
            lexicon = random.sample(list(lexicon.difference(source_words)),
                                    additional)

        #load the source space
        source_sp = Space.build(source_file, source_words.union(set(lexicon)))

    source_sp.normalize()

    if u.verbosity > 1:
        print("Reading: %s" % target_file)
    target_sp = Space.build(target_file)
    target_sp.normalize()

    if u.verbosity > 1:
        print("Retrieving translations")
    test_data = u.get_valid_data(source_sp, target_sp, test_data)

    #turn test data into a dictionary (a word can have mutiple translation)
    gold = collections.defaultdict(set)
    for k, v in test_data:
        gold[k].add(v)

    if u.verbosity > 1:
        print("Translating"
              )  #translates all the elements loaded in the source space
    source_sp = u.apply_tm(source_sp, tm)

    u.score(source_sp, target_sp, gold, additional, levcosts)
    print("Printing mapped vectors: %s" % out_file)
    np.savetxt("%s.vecs.txt" % out_file, source_sp.mat)
    #    np.savetxt("%s.wds.txt" % out_file, source_sp.id2row, fmt="%s")  # no utf8
    with open("%s.wds.txt" % out_file, "w") as outf:
        for s in source_sp.id2row:
            print(s, file=outf)
Exemple #13
0
def main():
    # Parse command line arguments
    parser = argparse.ArgumentParser(description='Evaluate embeddings of two languages in a shared space in word translation induction')
    parser.add_argument('-1','--embeddings1', help='the source embeddings')
    parser.add_argument('-2','--embeddings2', help='the target embeddings')
    parser.add_argument('-d', '--dictionary', default=sys.stdin.fileno(), help='the test dictionary file (defaults to stdin)')
    parser.add_argument('--encoding', default='utf-8', action='store_true', help='the character encoding for input/output (defaults to utf-8)')
    parser.add_argument('-l', '--levenshtein', help='the Levenshtein cost dictionary')
    parser.add_argument('-r', '--runname', default='RUN', help='the name for the current run')
    parser.add_argument('-a', '--alpha', default='1', help='the contribution of cos vs Levenshtein')
    parser.add_argument('-k', '--topK', default=10, type=int, help='the number of top candidates to output')
    parser.add_argument('-n', '--neighbors', default=150, type=int, help='the number of neighbors for WLD')
    parser.add_argument('-t', '--threshold', type=int, default=0, help='reduce vocabulary of the model for fast approximate evaluation (0 = off, otherwise typical value is 30,000)')
    parser.add_argument('-v', '--verbosity', type=int, default=1, help='the verbosity level')
    args = parser.parse_args()
    verbosity=args.verbosity
    alpha=float(args.alpha)

    levcosts = ut.readcosts(args.levenshtein)
    # Read input embeddings
    source_sp = Space.build(args.embeddings1,threshold=args.threshold) #,set(wlist)
    source_sp.normalize()
    if verbosity>2:
        print('Read %d source embeddings from %s' % (len(source_sp.row2id), args.embeddings1), file=sys.stderr)

    test_sp = Space.build(args.embeddings2,threshold=args.threshold) #,set(wlist_test)
    test_sp.normalize()
    if verbosity>2:
        print('Read %d target embeddings from %s' % (len(test_sp.row2id), args.embeddings2), file=sys.stderr)
    
    # Read dictionary and compute coverage
    oov = set()
    vocab = set()
    f = open(args.dictionary, encoding=args.encoding, errors='surrogateescape')
    src2trg = collections.defaultdict(set)
    for line in f:
        src, trg = line.rstrip().split('\t')
        try:
            src_ind = source_sp.row2id[src]
            trg_ind = test_sp.row2id[trg]
            src2trg[src_ind].add(trg_ind)
            vocab.add(src)
        except KeyError:
            oov.add(src)
            if verbosity>1:
                print('Out of dict: (%s) vs (%s)' % (src,trg),file=sys.stderr)
    oov -= vocab  # If one of the translation options is in the vocabulary, then the entry is not an oov
    coverage = len(src2trg) / (len(src2trg) + len(oov))
    if verbosity>1:
        print('Vocab size: %d; Number of pairs: %d' % (len(vocab),len(src2trg)), file=sys.stderr)

    # Compute accuracy
    correctcount = 0
    src, trg = zip(*src2trg.items())
    test_T=test_sp.mat.T
    for i in range(0, len(src2trg), BATCH_SIZE):
        j = min(i + BATCH_SIZE, len(src2trg))
        similarities = source_sp.mat[list(src[i:j])].dot(test_T)
        # nn = np.argmax(similarities, axis=1).tolist()
        nnl=np.argsort(-similarities, axis=1) #scores are negative for reverse sort
        for k in range(j-i):
            id_fs=nnl[k,0:args.neighbors].tolist()  # nn[k]=curlist[0]
            id_fs=id_fs[0]
            scores_f=similarities[k,id_fs]
            if verbosity>4:
                print('Next word %s' % src[i+k], file=sys.stderr)
            w_e= source_sp.id2row[src[i+k]]
            for pos,id_f in enumerate(id_fs):
                w_f=test_sp.id2row[id_f]
                if alpha<1:
                    scores_f[0,pos]= alpha*scores_f[0,pos]+(1-alpha)*(1-ut.iterative_levenshtein(w_e,w_f,levcosts))
            topKlist=np.argsort(-scores_f).tolist()[0][0:args.topK]
            bestid_f=id_fs[topKlist[0]]
            covered=set()
            if bestid_f in trg[i+k]:
                correctcount += 1
            for l in topKlist:
                id_f=id_fs[l]
                if id_f in covered:  # for occasional double vectors
                    continue
                covered.add(id_f)
                if id_f in trg[i+k]:
                    correct = 'Y'
                else:
                    correct = 'N'
                if verbosity>0:
                    goldids=[test_sp.id2row[goldid] for goldid in trg[i+k]]
                    print("%s\t%s\t%s\tR%d\t%.3f\t%s\t{%s}" %(source_sp.id2row[src[i+k]],correct,test_sp.id2row[id_f],l,scores_f[0,l],args.runname,','.join(goldids)))
    print('Coverage:{0:7.2%}  Accuracy total:{1:7.2%}  Accuracy vocab:{2:7.2%}'.format(coverage, correctcount / len(src2trg), correctcount / len(vocab)), file=sys.stderr)
Exemple #14
0
def main():
    # Parse command line arguments
    parser = argparse.ArgumentParser(description='Project the source embeddings into the target embedding space maximizing the squared Euclidean distances for the given dictionary')
    parser.add_argument('-1','--embeddings1', help='the source embeddings')
    parser.add_argument('-2','--embeddings2', help='the target embeddings')
    parser.add_argument('-t', '--train', help='the training file')
    parser.add_argument('-d', '--dev', help='the development file')
    parser.add_argument('-k', '--kfolds', type=int, default=5, help='K for cross-validation')
    parser.add_argument('-m', '--multilabel', type=int, default=0, help='use multilabel')
    parser.add_argument('-p', '--params', type=int, default=0, help='for HP tuning')
    parser.add_argument('-c', '--classifier', help='the classifier: LR, MLP, SVM or kNN')
    parser.add_argument('-s', '--solver', default='adam', help='the appropriate solver: sgd, adam, sag, liblinear, etc')
    parser.add_argument('-f', '--fallback', type=bool, default=False, help='use kNN as fallback')
    parser.add_argument('--encoding', default='utf-8', action='store_true', help='the character encoding for input/output (defaults to utf-8)')
    # parser.add_argument('-l', '--levenshtein', help='the Levenshtein cost dictionary')
    # parser.add_argument('-a', '--alpha', default='0.7', help='the contribution of cos vs Levenshtein')
    parser.add_argument('-v', '--verbosity', type=int, default=1, help='the verbosity level')
    args = parser.parse_args()
    verbosity=args.verbosity
    ut.verbosity=args.verbosity

    trainfile = ut.myopen(args.train, encoding=args.encoding, errors='surrogateescape')
    wlist, annot = ut.readtrain(args.train,{},args.multilabel)
    if verbosity>2:
        print('Read %d train examples from %s' % (len(annot), args.train))

    if (args.dev):
        testfile = ut.myopen(args.dev, encoding=args.encoding, errors='surrogateescape')
        wlist_test, annot_test = ut.readtrain(args.dev,{},args.multilabel)
        if verbosity>2:
            print('Read %d test examples from %s' % (len(annot_test), args.dev))
        
    source_sp = Space.build(args.embeddings1) #,set(wlist)
    if verbosity>2:
        print('Read %d source embeddings from %s' % (len(source_sp.row2id), args.embeddings1))

    if (args.dev):
        if args.embeddings2:
            test_sp = Space.build(args.embeddings2) #,set(wlist_test)
            if verbosity>2:
                print('Read %d target embeddings from %s' % (len(test_sp.row2id), args.embeddings2))
        else:
            test_sp=source_sp
    
    # Build word to index maps
    # src_desc2ind, src_word2ind = ut.makemaps(src_descs)
    
    vocab,y=ut.make_y(source_sp.id2row,wlist,annot)
    if verbosity>2:
        print('Total training lexicon of %d examples' % len(y))
    if (args.dev):
        vocab_test,y_test=ut.make_y(test_sp.id2row,wlist_test,annot_test)
        if verbosity>2:
            print('Total testing lexicon of %d examples' % len(y_test))

        
    # # Read dictionary
    # f = ut.myopen(args.dictionary, encoding=args.encoding, errors='surrogateescape')
    # src_indices = []
    # trg_indices = []
    # for line in f:
    #     elts = line.split()  # in case there are extra fields
    #     src, trg = elts[0:2]
    #     try:
    #         src_ind = src_word2ind[src]
    #         trg_ind = trg_word2ind[trg]
    #         for i in src_ind:
    #             for j in trg_ind:
    #                 src_indices.append(i)
    #                 trg_indices.append(j)
    #     except KeyError:
    #         if verbosity>1:
    #             print('WARNING: OOV dictionary entry ({0} - {1})'.format(src, trg), file=sys.stderr)
    # if verbosity>2:
    #     print('Read %d translations from %s' % (len(src_indices), args.dictionary), file=sys.stderr)

    # X_train, X_test, y_train, y_test = train_test_split(vocab, y, test_size=args.subset)
    # if verbosity>2:
    #     print('Train lexicon: %d, test lexicon: %d' % (len(y_train),len(y_test)))
    # X_train_mat = source_sp.mat[[source_sp.row2id[el] for el in X_train],:]
    X_train_mat = source_sp.mat[[source_sp.row2id[el] for el in vocab],:]
    if args.dev:
        X_test_mat = test_sp.mat[[test_sp.row2id[el] for el in vocab_test],:]
    if args.multilabel:
        mlb = MultiLabelBinarizer()
        if (args.dev):
            yfull = y + y_test
            yfull = mlb.fit_transform(yfull)
            y = yfull[0:len(y)]
            y_test = yfull[len(y):]
        else:
            y = mlb.fit_transform(y)
    
    if args.classifier == 'LR':
        clf = LogisticRegression(solver=args.solver, max_iter=100, random_state=42,
                                 multi_class='multinomial')
    elif args.classifier == 'MLP':

        if (args.params>0):
            p=ParameterGrid({'hl': [(50,), (75,), (75,75,75), (75,50,25)],
                             'mi':[50,100,200],
                             'alpha':[1e-3,1e-4,1e-5],
                             'lri':[.1,1e-2,1e-3],
                             'act':['relu', 'logistic', 'tanh' ]})[args.params-1]
        else:
            p={'mi': 50, 'lri': 0.1, 'hl': (150,), 'alpha': 0.001, 'act': 'tanh'} # 'hl':(200,) is better
        print(p)
        clf = MLPClassifier(hidden_layer_sizes=p['hl'], max_iter=p['mi'], alpha=p['alpha'],
                    solver=args.solver, verbose=0, tol=1e-4, random_state=1,
                    learning_rate_init=p['lri'], activation=p['act'], early_stopping = True)
    elif args.classifier == 'SVC':
        clf = SVC()
    elif args.classifier == 'kNN':
        clf=KNeighborsClassifier(n_neighbors=3, weights='uniform', algorithm='auto')
    elif args.classifier == 'RF':
        clf=RandomForestClassifier()
    if verbosity>2:
        print('Classifier: %s' % args.classifier)
    if args.fallback:
        clf_fallback=KNeighborsClassifier(n_neighbors=3, weights='distance', algorithm='auto')

    # clf.fit(X_train_mat, y_train)
    # y_pred = clf.predict(X_test_mat)
    # print(confusion_matrix(y_test,y_pred))
    # print(classification_report(y_test,y_pred))
    # print(accuracy_score(y_test,y_pred))  # clf.predict_proba(X_test_mat)
    if (args.dev):
        clf.fit(X_train_mat, y)
        predictions = clf.predict(X_test_mat)
        if args.multilabel:
            if args.fallback:
                clf_fallback.fit(X_train_mat, y)
                pred_fallback = mlb.inverse_transform(clf_fallback.predict(X_test_mat))
            print("Label ranking average precision: %0.3f" % metrics.label_ranking_average_precision_score(y_test,predictions))
            print("F1 score: %0.3f" % metrics.f1_score(y_test,predictions,average='samples'))
            i=0
            if verbosity>3:
                for gold,pred in zip(mlb.inverse_transform(y_test),mlb.inverse_transform(predictions)):
                    if args.fallback and len(pred)==0: # occasionaly no output is given
                        pred=pred_fallback[i]
                    print("%0.1f\t%s\t%s\t%s" % (len(set(gold).intersection(set(pred)))/len(gold),vocab_test[i],gold,pred))
                    i+=1
        else:
            print("F1 Macro: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))

    else:
        predictions = cross_val_predict(clf, X_train_mat, y, n_jobs=-2, cv=args.kfolds)
        scores = cross_val_score(clf, X_train_mat, y, n_jobs=-2, cv=args.kfolds, scoring='f1_macro') 
        print("F1 Macro: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
        if args.multilabel:
            if args.fallback:
                pred_fallback = mlb.inverse_transform(cross_val_predict(clf_fallback, X_train_mat, y, n_jobs=-2, cv=args.kfolds))
            i=0
            if verbosity>3:
                for gold,pred in zip(mlb.inverse_transform(y),mlb.inverse_transform(predictions)):
                    if args.fallback and len(pred)==0: # occasionaly no output is given
                        pred=pred_fallback[i]
                        print("%1d\tFor %s (%s) fallback: %s" % (gold==pred,vocab[i],gold,pred), file=sys.stderr)
                    print("%0.1f\t%s\t%s\t%s" % (len(set(gold).intersection(set(pred)))/len(gold),vocab[i],gold,pred))
                    i+=1
Exemple #15
0
def main(sys_argv):

    try:
        opts, argv = getopt.getopt(sys_argv[1:], "ho:c:",
                                   ["help", "output=", "correction="])
    except getopt.GetoptError as err:
        print(str(err))
        usage()
        sys.exit(1)

    out_file = "./translated_vecs"
    additional = None
    for opt, val in opts:
        if opt in ("-o", "--ouput"):
            out_file = val
        if opt in ("-c", "--correction"):
            try:
                additional = int(val)
            except ValueError:
                usage(1)
        elif opt in ("-h", "--help"):
            usage(0)
        else:
            usage(1)

    if len(argv) == 4:
        tm_file = argv[0] 
        test_file = argv[1]
        source_file = argv[2]	
        target_file = argv[3]
    else:
#        print(str(err))
        usage(1)

    print("Loading the translation matrix")
    tm = np.loadtxt(tm_file)

    print("Reading the test data")
    test_data = read_dict(test_file)

    #in the _source_ space, we only need to load vectors for the words in test.
    #semantic spaces may contain additional words, ALL words in the _target_ 
    #space are used as the search space
    source_words, _ = zip(*test_data)
    source_words = set(source_words)

    print("Reading: %s" % source_file)
    if not additional:
        source_sp = Space.build(source_file, source_words)
    else:
        #read all the words in the space
        lexicon = set(np.loadtxt(source_file, skiprows=1, dtype=str, 
                                    comments=None, usecols=(0,)).flatten())
        #the max number of additional+test elements is bounded by the size 
        #of the lexicon
        additional = min(additional, len(lexicon) - len(source_words))
        #we sample additional elements that are not already in source_words
        random.seed(100)
        lexicon = random.sample(list(lexicon.difference(source_words)), additional)
        
        #load the source space
        source_sp = Space.build(source_file, source_words.union(set(lexicon)))
    
    source_sp.normalize()

    print("Reading: %s" % target_file)
    target_sp = Space.build(target_file)
    target_sp.normalize()

    print("Translating") #translates all the elements loaded in the source space
    mapped_source_sp = apply_tm(source_sp, tm)
    
    print("Retrieving translations")
    test_data = get_valid_data(source_sp, target_sp, test_data)

    #turn test data into a dictionary (a word can have mutiple translation)
    gold = collections.defaultdict(set)
    for k, v in test_data:
        gold[k].add(v)

    score(mapped_source_sp, target_sp, gold, additional)

    print("Printing mapped vectors: %s" % out_file)
    np.savetxt("%s.vecs.txt" % out_file, mapped_source_sp.mat)
    np.savetxt("%s.wds.txt" % out_file, mapped_source_sp.id2row, fmt="%s")