def test_quaternionToMatrix_nasty(self):
     """Pick an arbitrary rotation and verify it works"""
     # Numbers pulled out of air
     Qin = spc.quaternionNormalize(np.array([0.25, 0.5, 0.71, 0.25]))
     matrix = spc.quaternionToMatrix(Qin)
     # Verify it's a rotation matrix
     ortho_test = np.dot(matrix, matrix.transpose())
     np.testing.assert_array_almost_equal(
         ortho_test, np.identity(3))
     det = np.linalg.det(matrix)
     self.assertTrue(det > 0) # Proper?
     invect = np.array([[5, 3, 2], [1, 0, 0],
                        [0.2, 5, 20], [0, 2, 2]])
     # Test matrix vs. quaternion rotation, single vector
     expected = spc.quaternionRotateVector(Qin, invect[1, :])
     actual = np.dot(matrix, invect[1, :])
     np.testing.assert_array_almost_equal(
         actual, expected)
     # All vectors at once
     expected = spc.quaternionRotateVector(
         np.tile(Qin, (4, 1)), invect)
     # Transform the row vectors into column vectors so the
     # numpy multiplication gives the right result (then
     # transform back to row vectors for comparison.)
     actual = np.dot(matrix, invect.transpose()).transpose()
     np.testing.assert_array_almost_equal(
         actual, expected)
 def test_quaternionFromMatrix_nasty(self):
     """Pick an arbitrary rotation and verify it works"""
     # https://csm.mech.utah.edu/content/wp-content/uploads/2011/08/orthList.pdf
     # Axis of rotation
     u = [12. / 41, -24. / 41, 31. / 41]
     # Rotation angle
     theta = np.radians(58)
     ux, uy, uz = u
     c = np.cos(theta)
     s = np.sin(theta)
     # Construct rotation matrix from axis and angle
     # This might be doable more nicely in matrix notation...
     matrix = np.array([
         [c + ux ** 2 * (1 - c),
          ux * uy * (1 - c) - uz * s,
          ux * uz * (1 - c) + uy * s],
         [uy * ux * (1 - c) + uz * s,
          c + uy ** 2 * (1 - c),
          uy * uz * (1 - c) - ux * s],
         [uz * ux * (1 - c) - uy * s,
          uz * uy * (1 - c) + ux * s,
          c + uz ** 2 * (1 - c)]
     ])
     Qout = spc.quaternionFromMatrix(matrix)
     # Sample inputs to rotate
     invect = np.array([[5, 3, 2], [1, 0, 0], [.2, 5, 20],
                           [0, 2, 2]])
     # Transform the row vectors into column vectors so the
     # numpy multiplication gives the right result (then
     # transform back to row vectors for comparison.)
     expected = np.dot(matrix, invect.transpose()).transpose()
     actual = spc.quaternionRotateVector(
         np.tile(Qout, (4, 1)), invect)
     np.testing.assert_array_almost_equal(
         actual, expected)
 def test_quaternionRotateVector(self):
     """Simple vector rotations"""
     cos45 = 0.5**0.5  # 1/sqrt(2), or cos/sin of 45 degrees
     # No rotation, 90 degrees around each of X, Y, and Z
     Qin = np.array([
         [0, 0, 0, 1],
         [cos45, 0, 0, cos45],
         [0, cos45, 0, cos45],
         [0, 0, cos45, cos45],
     ])
     invect = np.array([[1, 0, 0], [0, 0, 1], [1, 0, 0], [0, 1, 0]])
     expected = np.array([[1, 0, 0], [0, -1, 0], [0, 0, -1], [-1, 0, 0]])
     outvect = spc.quaternionRotateVector(Qin, invect)
     np.testing.assert_array_almost_equal(outvect, expected)