def setUpClass(cls): cls.df = create_spike_df() tsq = cls.df.meta cls.meta = tsq nsamples, _ = tsq.shape[0], tsq.size.unique().max() size = nsamples * tsq.shape[1], tsq.channel.nunique() cls.rows, cls.columns = size
def setUp(self): sp = create_spike_df() thr = sp.threshold(4 * sp.std()) clr = sp.clear_refrac(thr) binned = sp.bin(clr, binsize=10) self.xc = sp.xcorr(binned, maxlags=10) rawmap = np.array([1, 3, 2, 6, 7, 4, 8, 5, 13, 10, 12, 9, 14, 16, 11, 15]).reshape(4, 4) self.elecmap = ElectrodeMap(rawmap) self.dm = self.elecmap.distance_map(50, 125)
def setUp(self): self.sp = create_spike_df()
def setUp(self): self.spikes = create_spike_df() self.threshes = 2e-5, 3e-5 self.mses = None, 2, 3 self.binsizes = 0, 1, randint(10, 12)