Exemple #1
0
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import torch
import torch.legacy.nn as nn
import sparseconvnet.legacy as scn

# Use the GPU if there is one, otherwise CPU
dtype = 'torch.cuda.FloatTensor' if torch.cuda.is_available(
) else 'torch.FloatTensor'

model = scn.Sequential().add(
    scn.SparseVggNet(2, 1,
                     [['C', 8], ['C', 8], ['MP', 3, 2], ['C', 16], ['C', 16],
                      ['MP', 3, 2], ['C', 24], ['C', 24], ['MP', 3, 2]])).add(
                          scn.ValidConvolution(2, 24, 32, 3, False)).add(
                              scn.BatchNormReLU(32)).add(
                                  scn.SparseToDense(2)).type(dtype)

# output will be 10x10
inputSpatialSize = model.suggestInputSize(torch.LongTensor([10, 10]))
input = scn.InputBatch(2, inputSpatialSize)

msg = [
    " X   X  XXX  X    X    XX     X       X   XX   XXX   X    XXX   ",
    " X   X  X    X    X   X  X    X       X  X  X  X  X  X    X  X  ",
    " XXXXX  XX   X    X   X  X    X   X   X  X  X  XXX   X    X   X ",
    " X   X  X    X    X   X  X     X X X X   X  X  X  X  X    X  X  ",
    " X   X  XXX  XXX  XXX  XX       X   X     XX   X  X  XXX  XXX   "
Exemple #2
0
import torch.legacy.nn as nn
import sparseconvnet.legacy as scn
from data import getIterators

# Use the GPU if there is one, otherwise CPU
dtype = 'torch.cuda.FloatTensor' if torch.cuda.is_available(
) else 'torch.FloatTensor'

# two-dimensional SparseConvNet
model = nn.Sequential()
sparseModel = scn.Sequential()
denseModel = nn.Sequential()
model.add(sparseModel).add(denseModel)
sparseModel.add(
    scn.SparseVggNet(
        2, 3,
        [['C', 16], ['C', 16], 'MP', ['C', 32], ['C', 32], 'MP', ['C', 48],
         ['C', 48], 'MP', ['C', 64], ['C', 64], 'MP', ['C', 96], ['C', 96]]))
sparseModel.add(scn.Convolution(2, 96, 128, 3, 2, False))
sparseModel.add(scn.BatchNormReLU(128))
sparseModel.add(scn.SparseToDense(2))
denseModel.add(nn.View(-1, 128))
denseModel.add(nn.Linear(128, 3755))
model.type(dtype)
print(model)

spatial_size = sparseModel.suggestInputSize(torch.LongTensor([1, 1]))
print('input spatial size', spatial_size)
dataset = getIterators(spatial_size, 63, 3)
scn.ClassificationTrainValidate(model, dataset, {
    'nEpochs': 100,
    'initial_LR': 0.1,
Exemple #3
0
import torch.legacy.nn as nn
import sparseconvnet.legacy as scn
from data import getIterators

dtype = 'torch.FloatTensor'
dtype = 'torch.cuda.FloatTensor'  # Uncomment this to run on GPU

# two-dimensional SparseConvNet
model = nn.Sequential()
sparseModel = scn.Sequential()
denseModel = nn.Sequential()
model.add(sparseModel).add(denseModel)
sparseModel.add(
    scn.SparseVggNet(2, 3, [[
        'C',
        8,
    ], ['C', 8], 'MP', ['C', 16], ['C', 16], 'MP', ['C', 16, 8], ['C', 16, 8],
                            'MP', ['C', 24, 8], ['C', 24, 8], 'MP']))
sparseModel.add(scn.Convolution(2, 32, 64, 5, 1, False))
sparseModel.add(scn.BatchNormReLU(64))
sparseModel.add(scn.SparseToDense(2))
denseModel.add(nn.View(-1, 64))
denseModel.add(nn.Linear(64, 183))
model.type(dtype)
print(model)

spatial_size = sparseModel.suggestInputSize(torch.LongTensor([1, 1]))
print('input spatial size', spatial_size)
dataset = getIterators(spatial_size, 63, 3)
scn.ClassificationTrainValidate(model, dataset, {
    'nEpochs': 100,
import torch
import torch.legacy.nn as nn
import sparseconvnet.legacy as scn
from data import getIterators

# Use the GPU if there is one, otherwise CPU
dtype = 'torch.cuda.FloatTensor' if torch.cuda.is_available() else 'torch.FloatTensor'

# two-dimensional SparseConvNet
model = nn.Sequential()
sparseModel = scn.Sequential()
denseModel = nn.Sequential()
model.add(sparseModel).add(denseModel)
sparseModel.add(scn.SparseVggNet(2, 3, [
    ['C', 16, 8], ['C', 16, 8], 'MP',
    ['C', 32, 8], ['C', 32, 8], 'MP',
    ['C', 48, 16], ['C', 48, 16], 'MP',
    ['C', 64, 16], ['C', 64, 16], 'MP',
    ['C', 96, 16], ['C', 96, 16]]))
sparseModel.add(scn.Convolution(2, 96 + 16, 128, 3, 2, False))
sparseModel.add(scn.BatchNormReLU(128))
sparseModel.add(scn.SparseToDense(2))
denseModel.add(nn.View(-1, 128))
denseModel.add(nn.Linear(128, 3755))
model.type(dtype)
print(model)

spatial_size = sparseModel.suggestInputSize(torch.LongTensor([1, 1]))
print('input spatial size', spatial_size)
dataset = getIterators(spatial_size, 63, 3)
scn.ClassificationTrainValidate(
    model, dataset,