def test(): X,T,X_test,T_test,T_train_labels,T_labels = NORB.load_norb(size=32,mode="serial",want_dense=False) # X,T,X_test,T_test,T_train_labels,T_labels = NORB.load_whiten(size=32) print X.dtype,X.max() dp = nn.dp_ram(X=X,T=T,X_test=X_test,T_test=T_test,T_train_labels=None,T_labels=T_labels,data_batch=25) while 1: x,t,id = dp.train() print x.shape nn.show_images(x,(5,5)) print t nn.show() # np.savez("./dataset/norb_binocular_small_normalized", X=X,T=T,X_test=X_test,T_test=T_test,T_train_labels=T_train_labels,T_labels=T_labels) # f=np.load(work_address+'./dataset/norb_single_small.npz') # X=f['X'];T=f['T'];X_test=f['X_test'];T_test=f['T_test'];T_train_labels=f['T_train_labels'];T_labels=f['T_labels'] # f=np.load(work_address+'./dataset/norb_binocular_small.npz') # X=f['X'];T=f['T'];X_test=f['X_test'];T_test=f['T_test'];T_train_labels=f['T_train_labels'];T_labels=f['T_labels'] # X_std=X.std(axis=0) # X_mean=X.mean(axis=0) # X_test_std=X_test.std(axis=0) # X_test_mean=X_test.mean(axis=0) # X=(X-X_mean)/X_std # X_test=(X_test-X_test_mean)/X_test_std # np.savez("./dataset/norb_binocular_small_normalized", X=X,T=T,X_test=X_test,T_test=T_test,T_train_labels=T_train_labels,T_labels=T_labels) # f=np.load(work_address+'./dataset/norb_single_small.npz') # X=f['X'];T=f['T'];X_test=f['X_test'];T_test=f['T_test'];T_train_labels=f['T_train_labels'];T_labels=f['T_labels'] # f=np.load(work_address+'./dataset/norb_binocular_small.npz') # X=f['X'];T=f['T'];X_test=f['X_test'];T_test=f['T_test'];T_train_labels=f['T_train_labels'];T_labels=f['T_labels'] #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!numpy object dtype correct it
def test(): # X = TorontoFace.load(want_mean = True) X = TorontoFace.load_whiten(bias=.1) # X = TorontoFace.load_contrast(n=21,k=.01) # X = TorontoFace.load_contrast(n=3,k=.01,filter="box",contrast="mean") dp = nn.dp_ram(X=X, T=X, data_batch=9) while 1: X, T, _ = dp.train() nn.show_images(X, (3, 3)) nn.show()
def test(): # X = TorontoFace.load(want_mean = True) X = TorontoFace.load_whiten(bias=.1) # X = TorontoFace.load_contrast(n=21,k=.01) # X = TorontoFace.load_contrast(n=3,k=.01,filter="box",contrast="mean") dp = nn.dp_ram(X=X,T=X,data_batch=9) while 1: X,T,_ = dp.train() nn.show_images(X,(3,3)) nn.show()
def test(): # X = TorontoFace.load(want_mean = True) # X = TorontoFace.load_whiten(p=1) # X = TorontoFace.load_contrast(n=21,k=.01) X,T,X_test,T_test,T_train_labels,T_labels = MNIST.semi(N=100,want_dense = False) dp = nn.dp_ram(X,T,data_batch=100) while 1: x,t,id = dp.train() nn.show_images(x,(10,10)) print t nn.show()
def test(): # X = TorontoFace.load(want_mean = True) # X = TorontoFace.load_whiten(p=1) # X = TorontoFace.load_contrast(n=21,k=.01) X, T, X_test, T_test, T_train_labels, T_labels = MNIST.semi( N=100, want_dense=False) dp = nn.dp_ram(X, T, data_batch=100) while 1: x, t, id = dp.train() nn.show_images(x, (10, 10)) print t nn.show()
def test(): # X,T,X_test,T_test,T_train_labels,T_labels = NORB.load(size=32,want_mean=True) # X,T,X_test,T_test,T_train_labels,T_labels = NORB.load_whiten(size=32,bias=.1) X,T,X_test,T_test,T_train_labels,T_labels = NORB.load_contrast() print X.dtype,X.max() dp = nn.dp_ram(X=X,T=T,X_test=X_test,T_test=T_test,T_train_labels=None,T_labels=T_labels,data_batch=25) while 1: x,t,id = dp.train() print x.shape nn.show_images(x,(5,5)) print t nn.show()
def test(want_dense=False): # X,T,X_test,T_test,T_train_labels,T_labels = dataset.load_svhn_contrast_extra(n=21,k=.01,want_dense=False) # dataset.load_svhn_contrast_extra_make() # X,T,X_test,T_test,T_train_labels,T_labels = SVHN.load_contrast(n=13,k=.01,want_dense=False) X,T,X_test,T_test,_,_,lst = SVHN.semi(N=20) # X,T,X_test,T_test,T_train_labels,T_labels = dataset.load_svhn_contrast(n=13,want_dense=False) # X,T,X_test,T_test,T_train_labels,T_labels = dataset.load_svhn_pylearn2(want_dense=False) # X,T,X_test,T_test,T_train_labels,T_labels = dataset.load_svhn_torch(want_dense=False) # n = 0 # print X.shape dp = nn.dp_ram(X,T,data_batch=20) x,t,_ = dp.train() nn.show_images(x,(2,10)) nn.show()
def test(want_dense=False): # X,T,X_test,T_test,T_train_labels,T_labels = dataset.load_svhn_contrast_extra(n=21,k=.01,want_dense=False) # dataset.load_svhn_contrast_extra_make() # X,T,X_test,T_test,T_train_labels,T_labels = SVHN.load_contrast(n=13,k=.01,want_dense=False) X, T, X_test, T_test, _, _, lst = SVHN.semi(N=20) # X,T,X_test,T_test,T_train_labels,T_labels = dataset.load_svhn_contrast(n=13,want_dense=False) # X,T,X_test,T_test,T_train_labels,T_labels = dataset.load_svhn_pylearn2(want_dense=False) # X,T,X_test,T_test,T_train_labels,T_labels = dataset.load_svhn_torch(want_dense=False) # n = 0 # print X.shape dp = nn.dp_ram(X, T, data_batch=20) x, t, _ = dp.train() nn.show_images(x, (2, 10)) nn.show()
def test(): # X,T,X_test,T_test,T_train_labels,T_labels = CIFAR10.load(want_mean=True,want_dense=False) # X,T,X_test,T_test,T_train_labels,T_labels = CIFAR10.load_whiten(bias=.1) X,T,X_test,T_test,T_train_labels,T_labels = CIFAR10.load_contrast(n=13,k=.01) # X,T,X_test,T_test,T_train_labels,T_labels = NORB.load_whiten(size=32,bias=.1) # X = CIFAR10.load_cifar10_adam_patch(num_patch=100000,size=11,backend="numpy") # print X.dtype,X.max() dp = nn.dp_ram(X=X,X_test=X,data_batch=25) while 1: x,t,id = dp.train() print x.shape nn.show_images(x,(5,5)) print t nn.show()
def test(): # X,T,X_test,T_test,T_train_labels,T_labels = CIFAR10.load(want_mean=True,want_dense=False) # X,T,X_test,T_test,T_train_labels,T_labels = CIFAR10.load_whiten(bias=.1) X, T, X_test, T_test, T_train_labels, T_labels = CIFAR10.load_contrast( n=13, k=.01) # X,T,X_test,T_test,T_train_labels,T_labels = NORB.load_whiten(size=32,bias=.1) # X = CIFAR10.load_cifar10_adam_patch(num_patch=100000,size=11,backend="numpy") # print X.dtype,X.max() dp = nn.dp_ram(X=X, X_test=X, data_batch=25) while 1: x, t, id = dp.train() print x.shape nn.show_images(x, (5, 5)) print t nn.show()
def test(): # X,T,X_test,T_test,T_train_labels,T_labels = NORB.load(size=32,want_mean=True) # X,T,X_test,T_test,T_train_labels,T_labels = NORB.load_whiten(size=32,bias=.1) X, T, X_test, T_test, T_train_labels, T_labels = NORB.load_contrast() print X.dtype, X.max() dp = nn.dp_ram(X=X, T=T, X_test=X_test, T_test=T_test, T_train_labels=None, T_labels=T_labels, data_batch=25) while 1: x, t, id = dp.train() print x.shape nn.show_images(x, (5, 5)) print t nn.show()