assert opt.train_crop in ['random', 'corner', 'center', 'custom'] if opt.train_crop == 'random': crop_method = MultiScaleRandomCrop(opt.scales, opt.sample_size) elif opt.train_crop == 'corner': crop_method = MultiScaleCornerCrop(opt.scales, opt.sample_size) elif opt.train_crop == 'center': crop_method = MultiScaleCornerCrop(opt.scales, opt.sample_size, crop_positions=['c']) elif opt.train_crop == 'custom': crop_method = RandomSampleCrop(opt.sample_size) clip_transform = None spatial_transform = Compose( [ToTensor(opt.norm_value), ColorJitter(0.05, 0.05), norm_method]) temporal_transform = TemporalRandomCrop( int(opt.sample_duration * opt.t_stride)) training_data = get_training_set(opt, spatial_transform, temporal_transform) train_loader = torch.utils.data.DataLoader(training_data, batch_size=opt.batch_size, shuffle=True, num_workers=opt.n_threads, pin_memory=True) train_logger = Logger(os.path.join(opt.result_path, 'train.log'), ['epoch', 'loss', 'acc', 'lr']) train_batch_logger = Logger( os.path.join(opt.result_path, 'train_batch.log'),
def get_train_utils(opt, model_parameters): assert opt.train_crop in ['random', 'corner', 'center'] spatial_transform = [] if opt.train_crop == 'random': spatial_transform.append( RandomResizedCrop( opt.sample_size, (opt.train_crop_min_scale, 1.0), (opt.train_crop_min_ratio, 1.0 / opt.train_crop_min_ratio))) elif opt.train_crop == 'corner': scales = [1.0] scale_step = 1 / (2**(1 / 4)) for _ in range(1, 5): scales.append(scales[-1] * scale_step) spatial_transform.append(MultiScaleCornerCrop(opt.sample_size, scales)) elif opt.train_crop == 'center': spatial_transform.append(Resize(opt.sample_size)) spatial_transform.append(CenterCrop(opt.sample_size)) normalize = get_normalize_method(opt.mean, opt.std, opt.no_mean_norm, opt.no_std_norm) if not opt.no_hflip: spatial_transform.append(RandomHorizontalFlip()) if opt.colorjitter: spatial_transform.append(ColorJitter()) spatial_transform.append(ToTensor()) if opt.input_type == 'flow': spatial_transform.append(PickFirstChannels(n=2)) spatial_transform.append(ScaleValue(opt.value_scale)) spatial_transform.append(normalize) spatial_transform = Compose(spatial_transform) assert opt.train_t_crop in ['random', 'center'] temporal_transform = [] if opt.sample_t_stride > 1: temporal_transform.append(TemporalSubsampling(opt.sample_t_stride)) if opt.train_t_crop == 'random': temporal_transform.append(TemporalRandomCrop(opt.sample_duration)) elif opt.train_t_crop == 'center': temporal_transform.append(TemporalCenterCrop(opt.sample_duration)) temporal_transform = TemporalCompose(temporal_transform) train_data = get_training_data(opt.video_path, opt.annotation_path, opt.dataset, opt.input_type, opt.file_type, spatial_transform, temporal_transform) if opt.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler( train_data) else: train_sampler = None train_loader = torch.utils.data.DataLoader(train_data, batch_size=opt.batch_size, shuffle=(train_sampler is None), num_workers=opt.n_threads, pin_memory=True, sampler=train_sampler, worker_init_fn=worker_init_fn) if opt.is_master_node: train_logger = Logger(opt.result_path / 'train.log', ['epoch', 'loss', 'acc', 'lr']) train_batch_logger = Logger( opt.result_path / 'train_batch.log', ['epoch', 'batch', 'iter', 'loss', 'acc', 'lr']) else: train_logger = None train_batch_logger = None if opt.nesterov: dampening = 0 else: dampening = opt.dampening optimizer = SGD(model_parameters, lr=opt.learning_rate, momentum=opt.momentum, dampening=dampening, weight_decay=opt.weight_decay, nesterov=opt.nesterov) assert opt.lr_scheduler in ['plateau', 'multistep'] assert not (opt.lr_scheduler == 'plateau' and opt.no_val) if opt.lr_scheduler == 'plateau': scheduler = lr_scheduler.ReduceLROnPlateau( optimizer, 'min', patience=opt.plateau_patience) else: scheduler = lr_scheduler.MultiStepLR(optimizer, opt.multistep_milestones) return (train_loader, train_sampler, train_logger, train_batch_logger, optimizer, scheduler)
openpose_transform = { 'train': MultiScaleTorsoRandomCrop(scales, args.img_size), 'val': MultiScaleTorsoRandomCrop(np.linspace(center, center, num=1), args.img_size, centercrop=True) } spatial_transform = { 'train': Compose([ Scale(args.img_size), CenterCrop(args.img_size), RandomHorizontalFlip(), ColorJitter(brightness=0.1), ToTensor(1), Normalize(args.mean, args.std) ]), 'val': Compose([ Scale(args.img_size), CenterCrop(args.img_size), ToTensor(1), Normalize(args.mean, args.std) ]) } temporal_transform = { 'train': Compose([LoopPadding(args.clip_len)]), 'val': LoopPadding(args.clip_len)