def __init__(self, vsize_xyz, coors_range_xyz, num_point_features, max_num_points_per_voxel, max_num_voxels):
        try:
            from spconv.utils import VoxelGeneratorV2 as VoxelGenerator
            self.spconv_ver = 1
        except:
            try:
                from spconv.utils import VoxelGenerator
                self.spconv_ver = 1
            except:
                from spconv.utils import Point2VoxelCPU3d as VoxelGenerator
                self.spconv_ver = 2

        if self.spconv_ver == 1:
            self._voxel_generator = VoxelGenerator(
                voxel_size=vsize_xyz,
                point_cloud_range=coors_range_xyz,
                max_num_points=max_num_points_per_voxel,
                max_voxels=max_num_voxels
            )
        else:
            self._voxel_generator = VoxelGenerator(
                vsize_xyz=vsize_xyz,
                coors_range_xyz=coors_range_xyz,
                num_point_features=num_point_features,
                max_num_points_per_voxel=max_num_points_per_voxel,
                max_num_voxels=max_num_voxels
            )
Exemple #2
0
    def dataset_init(self, class_names, logger):
        self.db_sampler = None
        db_sampler_cfg = cfg.DATA_CONFIG.AUGMENTATION.DB_SAMPLER
        if self.training and db_sampler_cfg.ENABLED:
            db_infos = []
            for db_info_path in db_sampler_cfg.DB_INFO_PATH:
                db_info_path = cfg.ROOT_DIR / db_info_path
                with open(str(db_info_path), 'rb') as f:
                    infos = pickle.load(f)
                    if db_infos.__len__() == 0:
                        db_infos = infos
                    else:
                        [
                            db_infos[cls].extend(infos[cls])
                            for cls in db_infos.keys()
                        ]

            self.db_sampler = DataBaseSampler(db_infos=db_infos,
                                              sampler_cfg=db_sampler_cfg,
                                              class_names=class_names,
                                              logger=logger)

        voxel_generator_cfg = cfg.DATA_CONFIG.VOXEL_GENERATOR
        self.voxel_generator = VoxelGenerator(
            voxel_size=voxel_generator_cfg.VOXEL_SIZE,
            point_cloud_range=cfg.DATA_CONFIG.POINT_CLOUD_RANGE,
            max_num_points=voxel_generator_cfg.MAX_POINTS_PER_VOXEL)
Exemple #3
0
    def transform_points_to_voxels(self,
                                   data_dict=None,
                                   config=None,
                                   voxel_generator=None):
        if data_dict is None:
            from spconv.utils import VoxelGenerator

            voxel_generator = VoxelGenerator(
                voxel_size=config.VOXEL_SIZE,
                point_cloud_range=self.point_cloud_range,
                max_num_points=config.MAX_POINTS_PER_VOXEL,
                max_voxels=config.MAX_NUMBER_OF_VOXELS[self.mode])
            grid_size = (self.point_cloud_range[3:6] -
                         self.point_cloud_range[0:3]) / np.array(
                             config.VOXEL_SIZE)
            self.grid_size = np.round(grid_size).astype(np.int64)
            self.voxel_size = config.VOXEL_SIZE
            return partial(self.transform_points_to_voxels,
                           voxel_generator=voxel_generator)
        points = data_dict['points']
        voxels, coordinates, num_points = voxel_generator.generate(points)
        if not data_dict['use_lead_xyz']:
            voxels = voxels[..., 3:]  # remove xyz in voxels(N, 3)

        data_dict['voxels'] = voxels
        data_dict['voxel_coords'] = coordinates
        data_dict['voxel_num_points'] = num_points
        return data_dict
Exemple #4
0
    def transform_augmented_lidar_points_to_voxels(self,
                                                   data_dict=None,
                                                   config=None,
                                                   voxel_generator=None):
        if data_dict is None:
            try:
                from spconv.utils import VoxelGeneratorV2 as VoxelGenerator
            except:
                from spconv.utils import VoxelGenerator
            voxel_generator = VoxelGenerator(
                voxel_size=config.VOXEL_SIZE,
                point_cloud_range=self.point_cloud_range,
                max_num_points=config.MAX_POINTS_PER_VOXEL,
                max_voxels=config.MAX_NUMBER_OF_VOXELS[self.mode])
            grid_size = (self.point_cloud_range[3:6] -
                         self.point_cloud_range[0:3]) / np.array(
                             config.VOXEL_SIZE)
            self.grid_size = np.round(grid_size).astype(np.int64)
            self.voxel_size = config.VOXEL_SIZE
            self.voxel_augmented_lidar_labels = config.VOXEL_AUGMENTED_LIDAR_LABELS
            return partial(self.transform_augmented_lidar_points_to_voxels,
                           voxel_generator=voxel_generator)

        points = data_dict['points']
        voxel_output = voxel_generator.generate(points)
        if isinstance(voxel_output, dict):
            voxels, coordinates, num_points = \
                voxel_output['voxels'], voxel_output['coordinates'], voxel_output['num_points_per_voxel']
        else:
            voxels, coordinates, num_points = voxel_output

        assert data_dict[
            'use_lead_xyz'], 'use_lead_xyz is set False! xyz should be used for voxelization!'

        if self.mode == 'train':
            voxel_labels = voxels[
                ...,
                3:]  #[M, max_points, ndim] float tensor. only contain points
            assert voxel_labels.shape[-1] == len(self.voxel_augmented_lidar_labels), \
            'voxel_labels.shape[-1]='+str(voxel_labels.shape[-1])+' len(self.voxel_augmented_lidar_labels)='+str(len(self.voxel_augmented_lidar_labels))
            for idx, x in enumerate(self.voxel_augmented_lidar_labels):
                if x == 'drivable_area_bool':
                    data_dict['voxels_drivable_cls_labels'] = np.max(
                        voxel_labels[:, :, idx],
                        axis=1).reshape(-1, 1)  #binary 1 or 0
                elif x == 'lidar_ground_bool':
                    data_dict['voxels_ground_cls_labels'] = np.max(
                        voxel_labels[:, :, idx],
                        axis=1).reshape(-1, 1)  #binary 1 or 0
                elif x == 'ground_height':
                    data_dict['voxels_ground_reg_labels'] = np.min(
                        voxel_labels[:, :, idx], axis=1).reshape(-1, 1)  #float

        voxels = voxels[..., :3]  # use xyz as voxel data

        data_dict['voxels'] = voxels
        data_dict['voxel_coords'] = coordinates
        data_dict['voxel_num_points'] = num_points

        return data_dict
Exemple #5
0
    def dataset_init(self, class_names, logger):
        self.db_sampler = None
        db_sampler_cfg = cfg.DATA_CONFIG.AUGMENTATION.DB_SAMPLER
        if self.training and db_sampler_cfg.ENABLED:
            db_infos = []
            for db_info_path in db_sampler_cfg.DB_INFO_PATH:
                db_info_path = cfg.ROOT_DIR / db_info_path
                with open(str(db_info_path), 'rb') as f:
                    infos = pickle.load(f)
                    if db_infos.__len__() == 0:
                        db_infos = infos
                    else:
                        [db_infos[cls].extend(infos[cls]) for cls in db_infos.keys()]

            self.db_sampler = DataBaseSampler(
                db_infos=db_infos, sampler_cfg=db_sampler_cfg, class_names=class_names, logger=logger
            )

        voxel_generator_cfg = cfg.DATA_CONFIG.VOXEL_GENERATOR
        self.voxel_generator = VoxelGenerator(
            voxel_size=voxel_generator_cfg.VOXEL_SIZE,
            point_cloud_range=cfg.DATA_CONFIG.POINT_CLOUD_RANGE,
            max_num_points=voxel_generator_cfg.MAX_POINTS_PER_VOXEL
        )

        if cfg.MODEL.NAME == 'MVF':
            self.mvf_feature = PointCloudVoxel(0,
                                              voxel_generator_cfg.BEV_FEATURE_SIZE_XY[0], voxel_generator_cfg.BEV_FEATURE_SIZE_XY[1], 1,
                                              voxel_generator_cfg.BEV_RANGE[0], voxel_generator_cfg.BEV_RANGE[1], voxel_generator_cfg.BEV_RANGE[2], voxel_generator_cfg.BEV_RANGE[3], voxel_generator_cfg.BEV_RANGE[4], voxel_generator_cfg.BEV_RANGE[5],
                                              0,
                                              voxel_generator_cfg.FV_FEATURE_SIZE_ROW_COL[0], voxel_generator_cfg.FV_FEATURE_SIZE_ROW_COL[1],
                                              voxel_generator_cfg.FV_RANGE_THETA_PHI[0], voxel_generator_cfg.FV_RANGE_THETA_PHI[1], voxel_generator_cfg.FV_RANGE_THETA_PHI[2], voxel_generator_cfg.FV_RANGE_THETA_PHI[3])
Exemple #6
0
def sponv_process_pointcloud(point_cloud, template=False, is_testset=False):
    if not is_testset:
        point_cloud = shuffle_points(point_cloud)
        max_number_of_voxel = 16000
    else:
        max_number_of_voxel = 40000
    try:
        from spconv.utils import VoxelGeneratorV2 as VoxelGenerator
    except:
        from spconv.utils import VoxelGenerator
    if template:
        point_cloud_range = [cfg.TEMPLATE_X_MIN, cfg.TEMPLATE_Y_MIN, cfg.TEMPLATE_Z_MIN, cfg.TEMPLATE_X_MAX, cfg.TEMPLATE_Y_MAX, cfg.TEMPLATE_Z_MAX]
    else:
        point_cloud_range = [cfg.SCENE_X_MIN, cfg.SCENE_Y_MIN, cfg.SCENE_Z_MIN, cfg.SCENE_X_MAX, cfg.SCENE_Y_MAX, cfg.SCENE_Z_MAX]
    voxel_size = np.array([cfg.VOXEL_X_SIZE, cfg.VOXEL_Y_SIZE, cfg.VOXEL_Z_SIZE], dtype = np.float32)
    max_point_number = cfg.VOXEL_POINT_COUNT


    voxel_generator = VoxelGenerator(
        voxel_size=voxel_size,
        point_cloud_range=point_cloud_range,
        max_num_points=max_point_number,
        max_voxels=max_number_of_voxel
    )
    voxel_output = voxel_generator.generate(point_cloud)
    if isinstance(voxel_output, dict):
        voxels, coordinates, num_points = \
            voxel_output['voxels'], voxel_output['coordinates'], voxel_output['num_points_per_voxel']
    else:
        voxels, coordinates, num_points = voxel_output

    voxel_dict = {'feature_buffer': voxels,
                  'coordinate_buffer': coordinates,
                  'number_buffer': num_points}
    return voxel_dict
def initialize_model(args):
    global model, voxel_generator
    cfg = Config.fromfile(args.config)
    model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
    if args.checkpoint is not None:
        load_checkpoint(model, args.checkpoint, map_location="cpu")
    # print(model)
    if args.fp16:
        print("cast model to fp16")
        model = model.half()

    model = model.cuda()
    model.eval()

    global device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    range = cfg.voxel_generator.range
    voxel_size = cfg.voxel_generator.voxel_size
    max_points_in_voxel = cfg.voxel_generator.max_points_in_voxel
    max_voxel_num = cfg.voxel_generator.max_voxel_num[1]
    voxel_generator = VoxelGenerator(voxel_size=voxel_size,
                                     point_cloud_range=range,
                                     max_num_points=max_points_in_voxel,
                                     max_voxels=max_voxel_num)
    return model
    def transform_points_to_voxels(self, data_dict=None, config=None, voxel_generator=None):
        if data_dict is None:
            try:
                from spconv.utils import VoxelGeneratorV2 as VoxelGenerator
            except:
                from spconv.utils import VoxelGenerator

            voxel_generator = VoxelGenerator(
                voxel_size=config.VOXEL_SIZE,
                point_cloud_range=self.point_cloud_range,
                max_num_points=config.MAX_POINTS_PER_VOXEL,
                max_voxels=config.MAX_NUMBER_OF_VOXELS[self.mode]
            )
            grid_size = (self.point_cloud_range[3:6] - self.point_cloud_range[0:3]) / np.array(config.VOXEL_SIZE)
            self.grid_size = np.round(grid_size).astype(np.int64)
            self.voxel_size = config.VOXEL_SIZE
            return partial(self.transform_points_to_voxels, voxel_generator=voxel_generator)

        points = data_dict['points']
        color = get_color(data_dict)
        points = np.concatenate([points, color], axis=1)
        voxel_output = voxel_generator.generate(points)
        if isinstance(voxel_output, dict):
            voxels, coordinates, num_points = \
                voxel_output['voxels'], voxel_output['coordinates'], voxel_output['num_points_per_voxel']
        else:
            voxels, coordinates, num_points = voxel_output

        if not data_dict['use_lead_xyz']:
            voxels = voxels[..., 3:]  # remove xyz in voxels(N, 3)

        data_dict['voxels'] = voxels
        data_dict['voxel_coords'] = coordinates
        data_dict['voxel_num_points'] = num_points
        return data_dict
    def transform_points_to_voxels(self,
                                   data_dict=None,
                                   config=None,
                                   voxel_generator=None):
        if data_dict is None:
            try:
                from spconv.utils import VoxelGeneratorV2 as VoxelGenerator
            except:
                from spconv.utils import VoxelGenerator
            voxel_generator = VoxelGenerator(
                voxel_size=config.VOXEL_SIZE,
                point_cloud_range=self.point_cloud_range,
                max_num_points=config.MAX_POINTS_PER_VOXEL,
                max_voxels=config.MAX_NUMBER_OF_VOXELS[self.mode])
            grid_size = (self.point_cloud_range[3:6] -
                         self.point_cloud_range[0:3]) / np.array(
                             config.VOXEL_SIZE)
            self.grid_size = np.round(grid_size).astype(np.int64)
            self.voxel_size = config.VOXEL_SIZE
            self.max_voxels = config.MAX_NUMBER_OF_VOXELS[self.mode]
            self.skip_voxel_generator = config.get('SKIP_VOXEL_GENERATOR',
                                                   False)
            return partial(self.transform_points_to_voxels,
                           voxel_generator=voxel_generator)

        if self.skip_voxel_generator:
            points = data_dict['points']
            pc_range_min = np.array(self.point_cloud_range[:3]).reshape(-1, 3)
            voxel_size_array = np.array(self.voxel_size).reshape(-1, 3)
            keep = common_utils.mask_points_by_range_hard(
                points, self.point_cloud_range)
            chosen_points = points[keep]
            chosen_points = chosen_points[:self.max_voxels, :]
            coords = (chosen_points[:, :3] - pc_range_min) // voxel_size_array
            coords = coords.astype(int)
            num_points = np.ones(chosen_points.shape[0])
            data_dict['voxels'] = chosen_points
            data_dict['voxel_coords'] = coords[:, [2, 1, 0]]
            data_dict['voxel_num_points'] = num_points
        else:
            points = data_dict['points']
            voxel_output = voxel_generator.generate(points)
            if isinstance(voxel_output, dict):
                voxels, coordinates, num_points = \
                    voxel_output['voxels'], voxel_output['coordinates'], voxel_output['num_points_per_voxel']
            else:
                voxels, coordinates, num_points = voxel_output

            if not data_dict['use_lead_xyz']:
                voxels = voxels[..., 3:]  # remove xyz in voxels(N, 3)

            data_dict['voxels'] = voxels
            data_dict['voxel_coords'] = coordinates
            data_dict['voxel_num_points'] = num_points
        return data_dict
    def transform_points_to_voxels(self,
                                   data_dict=None,
                                   config=None,
                                   voxel_generator=None):
        # 在类初始化时调用
        if data_dict is None:
            try:
                from spconv.utils import VoxelGeneratorV2 as VoxelGenerator
            except:
                from spconv.utils import VoxelGenerator

            voxel_generator = VoxelGenerator(
                voxel_size=config.VOXEL_SIZE,
                point_cloud_range=self.point_cloud_range,
                max_num_points=config.MAX_POINTS_PER_VOXEL,
                max_voxels=config.MAX_NUMBER_OF_VOXELS[self.mode])
            grid_size = (self.point_cloud_range[3:6] -
                         self.point_cloud_range[0:3]) / np.array(
                             config.VOXEL_SIZE)
            self.grid_size = np.round(grid_size).astype(np.int64)
            self.voxel_size = config.VOXEL_SIZE
            return partial(self.transform_points_to_voxels,
                           voxel_generator=voxel_generator)

        points = data_dict['points']
        # res = {
        #     "voxels": voxels,
        #     "coordinates": coors,
        #     "num_points_per_voxel": num_points_per_voxel,
        #     "voxel_point_mask": voxel_point_mask,
        #     "voxel_num": voxel_num
        #      "voxel_point_mask": res["voxel_point_mask"].reshape(
        #     -1, max_points, 1)
        # }
        voxel_output = voxel_generator.generate(points)
        if isinstance(voxel_output, dict):
            voxels, coordinates, num_points = \
                voxel_output['voxels'], voxel_output['coordinates'], voxel_output['num_points_per_voxel']
        else:
            voxels, coordinates, num_points = voxel_output

        if not data_dict['use_lead_xyz']:  # True
            voxels = voxels[..., 3:]  # remove xyz in voxels(N, 3)

        data_dict['voxels'] = voxels
        data_dict['voxel_coords'] = coordinates
        data_dict['voxel_num_points'] = num_points
        return data_dict
Exemple #11
0
    def transform_points_to_voxels(self,
                                   data_dict=None,
                                   config=None,
                                   voxel_generator=None):
        if data_dict is None:
            try:
                from spconv.utils import VoxelGeneratorV2 as VoxelGenerator
            except:
                from spconv.utils import VoxelGenerator

            voxel_generator = VoxelGenerator(
                voxel_size=config.VOXEL_SIZE,
                point_cloud_range=self.point_cloud_range,
                max_num_points=config.MAX_POINTS_PER_VOXEL,
                max_voxels=config.MAX_NUMBER_OF_VOXELS[self.mode])
            grid_size = (self.point_cloud_range[3:6] -
                         self.point_cloud_range[0:3]) / np.array(
                             config.VOXEL_SIZE)
            self.grid_size = np.round(grid_size).astype(np.int64)
            self.voxel_size = config.VOXEL_SIZE
            return partial(self.transform_points_to_voxels,
                           voxel_generator=voxel_generator)

        points = data_dict['points']
        voxel_output = voxel_generator.generate(points)
        if isinstance(voxel_output, dict):
            voxels, coordinates, num_points = \
                voxel_output['voxels'], voxel_output['coordinates'], voxel_output['num_points_per_voxel']
        else:
            voxels, coordinates, num_points = voxel_output

        if not data_dict['use_lead_xyz']:
            voxels = voxels[..., 3:]  # remove xyz in voxels(N, 3)

        data_dict['voxels'] = voxels
        data_dict['voxel_coords'] = coordinates

        data_dict['voxel_num_points'] = num_points
        voxel_features, voxel_num_points = data_dict['voxels'], data_dict[
            'voxel_num_points']
        points_mean = np.sum(voxel_features[:, :, :], axis=1, keepdims=False)
        num_points = num_points.astype(voxels.dtype).reshape((-1, 1))
        normalizer = np.clip(num_points, a_min=1.0, a_max=6.0)
        points_mean = points_mean / normalizer
        data_dict['voxel_features'] = points_mean

        return data_dict
Exemple #12
0
    def transform_points_to_rangevoxels(self,
                                        data_dict=None,
                                        config=None,
                                        voxel_generator=None):
        if data_dict is None:
            from sphconv import VoxelGenerator

            voxel_generator = VoxelGenerator(config.v_res, config.h_res,
                                             config.d_res, config.v_range,
                                             config.h_range, config.d_range,
                                             config.log)

            self.grid_size = np.array(
                [config.d_res, config.h_res, config.v_res]).astype(np.int64)
            return partial(self.transform_points_to_rangevoxels,
                           voxel_generator=voxel_generator)

        points = data_dict['points']
        rangeV = voxel_generator.generate(points)
        data_dict['rangeV'] = rangeV
        return data_dict
Exemple #13
0
def build(voxel_config):
    """Builds a tensor dictionary based on the InputReader config.

    Args:
        input_reader_config: A input_reader_pb2.InputReader object.

    Returns:
        A tensor dict based on the input_reader_config.

    Raises:
        ValueError: On invalid input reader proto.
        ValueError: If no input paths are specified.
    """
    if not isinstance(voxel_config, (voxel_generator_pb2.VoxelGenerator)):
        raise ValueError('input_reader_config not of type '
                         'input_reader_pb2.InputReader.')
    voxel_generator = VoxelGenerator(
        voxel_size=list(voxel_config.voxel_size),
        point_cloud_range=list(voxel_config.point_cloud_range),
        max_num_points=voxel_config.max_number_of_points_per_voxel,
        max_voxels=20000)
    return voxel_generator
Exemple #14
0
def noise_robustness(batch_size, ret):
    """
    Add noise points around every ground truth box for SECOND and Point-RCNN.
    The idea is proposed in TANet (AAAI 2020), https://arxiv.org/pdf/1912.05163.pdf.

    How to use:
    For now, this function should be added to line 179 of pcdet/datasets/dataset.py
    TODO: Integrate with pcdet/datasets/dataset.py
    Change no_of_pts to number of uniformly generated noise points desired
    around each GT bounding box.

    :param batch_size:
    :param ret:
    :return:
    """
    if True:
        np.random.seed(0)  # Numpy module.
        voxels_flag = True
        no_of_pts = 100
        voxel_list = []
        coords_list = []
        num_points_list = []
        for k in range(batch_size):
            for i_box in range(len(ret['gt_boxes'][k])):
                bbox = ret['gt_boxes'][k][i_box]
                cx = bbox[0]
                cy = bbox[1]
                cz = bbox[2]
                l = bbox[3]
                w = bbox[4]
                h = bbox[5]
                z1 = np.random.uniform(cx + l // 2, cx + 3 * l,
                                       (no_of_pts // 2, 1))
                z2 = np.random.uniform(cx - l // 2, cx - 3 * l,
                                       (no_of_pts // 2, 1))
                z = np.concatenate([z1, z2], 0)
                y1 = np.random.uniform(cy + w // 2, cy + 3 * w,
                                       (no_of_pts // 2, 1))
                y2 = np.random.uniform(cy - w // 2, cy - 3 * w,
                                       (no_of_pts // 2, 1))
                y = np.concatenate([y1, y2], 0)
                x1 = np.random.uniform(cz + h // 2, cz + 3 * h,
                                       (no_of_pts // 2, 1))
                x2 = np.random.uniform(cz - h // 2, cz - 3 * h,
                                       (no_of_pts // 2, 1))
                x = np.concatenate([x1, x2], 0)
                r = np.ones([no_of_pts, 1])
                b = np.zeros([no_of_pts, 1]) + k
                noise = np.concatenate([b, z, y, x, r], 1)
                ret['points'] = np.concatenate([ret['points'], noise], 0)

            if voxels_flag:
                voxel_generator = VoxelGenerator(
                    voxel_size=[0.05, 0.05, 0.1],
                    point_cloud_range=[0, -40, -3, 70.4, 40, 1],
                    max_num_points=5,
                    max_voxels=40000,
                )
                batch_mask = ret['points'][:, 0] == k
                points_extract = ret['points'][batch_mask, :]
                voxels, coordinates, num_points = voxel_generator.generate(
                    points_extract[:, 1:])
                voxel_list.append(voxels)
                coords_list.append(coordinates)
                num_points_list.append(num_points)

        if voxels_flag:
            ret['voxels'] = np.concatenate(voxel_list, axis=0)
            ret['voxel_num_points'] = np.concatenate(num_points_list, axis=0)
            coors = []
            for i, coor in enumerate(coords_list):
                coor_pad = np.pad(coor, ((0, 0), (1, 0)),
                                  mode='constant',
                                  constant_values=i)
                coors.append(coor_pad)
            ret['voxel_coords'] = np.concatenate(coors, axis=0)

    return ret
    def __init__(self, cfg):
        self.split = "train"  ### Default is training
        self.label_objs = []
        self.data_paths = []
        self.label_paths = []
        self.cfg = cfg
        self.batchsize_per_replica = cfg["BATCHSIZE_PER_REPLICA"]
        self.label_sources = []  #cfg["LABEL_SOURCES"]
        self.dataset_names = cfg["DATASET_NAMES"]
        self.label_type = cfg["LABEL_TYPE"]
        self.AUGMENT_COORDS_TO_FEATS = False  #optional
        self._labels_init = False
        self._get_data_files("train")
        self.data_objs = np.load(
            self.data_paths[0])  ### Only load the first one for now

        #### Add the voxelizer here
        if ("Lidar" in cfg) and cfg["VOX"]:
            self.VOXEL_SIZE = [0.1, 0.1, 0.2]

            self.point_cloud_range = POINT_RANGE  #np.array([  0. , -75. ,  -3. ,  75.0,  75. ,   3. ], dtype=np.float32)
            self.MAX_POINTS_PER_VOXEL = 5
            self.MAX_NUMBER_OF_VOXELS = 16000
            self.voxel_generator = VoxelGenerator(
                voxel_size=self.VOXEL_SIZE,
                point_cloud_range=self.point_cloud_range,
                max_num_points=self.MAX_POINTS_PER_VOXEL,
                max_voxels=self.MAX_NUMBER_OF_VOXELS)
            grid_size = (self.point_cloud_range[3:6] -
                         self.point_cloud_range[0:3]) / np.array(
                             self.VOXEL_SIZE)
            self.grid_size = np.round(grid_size).astype(np.int64)
            self.voxel_size = self.VOXEL_SIZE
        elif cfg["VOX"]:
            augment_data = (self.split == "TRAIN")
            #### Vox parameters here
            self.VOXEL_SIZE = 0.05  #0.02 # 5cm
            self.CLIP_BOUND = None  #(-1000, -1000, -1000, 1000, 1000, 1000)

            self.data_aug_color_trans_ratio = 0.1
            self.data_aug_color_jitter_std = 0.05
            self.ELASTIC_DISTORT_PARAMS = ((0.2, 0.4), (0.8, 1.6))

            if augment_data:
                self.prevoxel_transform_train = []
                self.prevoxel_transform_train.append(
                    transforms.ElasticDistortion(self.ELASTIC_DISTORT_PARAMS))
                self.prevoxel_transform = transforms.Compose(
                    self.prevoxel_transform_train)

                self.input_transforms = []
                self.input_transforms += [
                    transforms.RandomDropout(0.2),
                    transforms.RandomHorizontalFlip('z', False),
                    #transforms.ChromaticAutoContrast(),
                    transforms.ChromaticTranslation(
                        self.data_aug_color_trans_ratio),
                    transforms.ChromaticJitter(self.data_aug_color_jitter_std),
                    # t.HueSaturationTranslation(config.data_aug_hue_max, config.data_aug_saturation_max),
                ]
                self.input_transforms = transforms.Compose(
                    self.input_transforms)

            # Coordinate Augmentation Arguments: Unlike feature augmentation, coordinate
            # augmentation has to be done before voxelization
            self.SCALE_AUGMENTATION_BOUND = (0.9, 1.1)
            self.ROTATION_AUGMENTATION_BOUND = ((-np.pi / 64, np.pi / 64),
                                                (-np.pi / 64,
                                                 np.pi / 64), (-np.pi, np.pi))
            self.TRANSLATION_AUGMENTATION_RATIO_BOUND = ((-0.2, 0.2),
                                                         (-0.2, 0.2), (0, 0))

            self.voxelizer = Voxelizer(
                voxel_size=self.VOXEL_SIZE,
                clip_bound=self.CLIP_BOUND,
                use_augmentation=augment_data,
                scale_augmentation_bound=self.SCALE_AUGMENTATION_BOUND,
                rotation_augmentation_bound=self.ROTATION_AUGMENTATION_BOUND,
                translation_augmentation_ratio_bound=self.
                TRANSLATION_AUGMENTATION_RATIO_BOUND,
                ignore_label=True)
Exemple #16
0
    def transform_points_to_voxels(self,
                                   data_dict=None,
                                   config=None,
                                   voxel_generator=None,
                                   voxel_generator_2=None):
        if data_dict is None:
            try:
                from spconv.utils import VoxelGeneratorV2 as VoxelGenerator
            except:
                from spconv.utils import VoxelGenerator

            voxel_generator = VoxelGenerator(
                voxel_size=config.VOXEL_SIZE,
                point_cloud_range=self.point_cloud_range,
                max_num_points=config.MAX_POINTS_PER_VOXEL,
                max_voxels=config.MAX_NUMBER_OF_VOXELS[self.mode])
            #voxel_generator_2 = VoxelGenerator(
            #    voxel_size=config.VOXEL_SIZE,
            #    point_cloud_range=self.point_cloud_range,
            #    max_num_points=config.MAX_POINTS_PER_VOXEL,
            #    max_voxels=60000
            #)
            grid_size = (self.point_cloud_range[3:6] -
                         self.point_cloud_range[0:3]) / np.array(
                             config.VOXEL_SIZE)
            self.grid_size = np.round(grid_size).astype(np.int64)
            self.voxel_size = config.VOXEL_SIZE
            return partial(self.transform_points_to_voxels,
                           voxel_generator=voxel_generator,
                           voxel_generator_2=voxel_generator_2)

        points = data_dict['points']
        points = data_dict['points_sp']
        indices = data_dict['indices']
        #print(points.shape)
        """
           add code for visibility
        """
        ori_points = points[:, [0, 1, 2, 4]]
        #print(points[:,-1])
        voxel_size = self.voxel_size
        pc_range = self.point_cloud_range
        #print(pc_range)
        #print(self.voxel_size)
        origins = data_dict['origins']
        num_points = points.shape[0]
        num_original = num_points
        time_stamps = np.array([0], dtype=np.float32)
        time_stamps = points[
            indices[:-1],
            -1]  # counting on the fact we do not miss points from any intermediate time_stamps
        time_stamps = (time_stamps[:-1] + time_stamps[1:]) / 2
        time_stamps = [-1000.0] + time_stamps.tolist() + [1000.0
                                                          ]  # add boundaries
        time_stamps = np.array(time_stamps)
        num_original = indices[-1]
        #print(time_stamps)
        #print(points.shape)
        #sys.exit()
        if num_points > num_original:
            #print("this is test sample")
            original_points, sampled_points = ori_points[:
                                                         num_original, :], ori_points[
                                                             num_original:, :]
            visibility, original_mask, sampled_mask = mapping.compute_logodds_and_masks(
                original_points, sampled_points, origins, time_stamps,
                pc_range, min(voxel_size))
            points = np.concatenate(
                (original_points[original_mask], sampled_points[sampled_mask]))
        else:

            visibility = mapping.compute_logodds(ori_points, origins,
                                                 time_stamps, pc_range, 0.2)

        np.set_printoptions(threshold=sys.maxsize)
        visi_map = np.zeros([512, 512, 3])
        visibility = np.int64(visibility)
        visibility = np.reshape(visibility, (40, 512, 512))[0:40, :, :]
        visibility = np.transpose(visibility, (2, 1, 0))
        #print(visibility)
        #sys.exit()
        mask_occ = (visibility >= 1).nonzero()
        #print(mask_occ)
        mask_free = (visibility == 0).nonzero()
        mask_unknown = (visibility == -1).nonzero()
        visi_map[np.int64(mask_free[0]),
                 np.int64(mask_free[1]), :] = np.array([255, 0, 0]) / 255
        visi_map[np.int64(mask_occ[0]),
                 np.int64(mask_occ[1]), :] = np.array([0, 255, 0]) / 255
        visi_map[mask_unknown[0],
                 mask_unknown[1], :] = np.array([0, 0, 255]) / 255
        #print(.shape)
        #visibility = np.pad(visibility, ((0,2),(0,0)), 'edge')
        data_dict['vis'] = visibility
        #print(data_dict.keys())
        dense_points = data_dict['dense_point']
        points = data_dict['points']
        #print(points.shape)
        voxel_output = voxel_generator.generate(points)
        #voxel_dense = voxel_generator.generate(dense_points)
        #print(voxel_dense[...,-1])
        #print(voxel_output['voxels'].shape)
        #sys.exit()
        if isinstance(voxel_output, dict):
            voxels, coordinates, num_points = \
                voxel_output['voxels'], voxel_output['coordinates'], voxel_output['num_points_per_voxel']
        else:
            voxels, coordinates, num_points = voxel_output

        if not data_dict['use_lead_xyz']:
            voxels = voxels[..., 3:]  # remove xyz in voxels(N, 3)
        #data_dict['dense_pillar'] = voxel_dense['voxels']
        #data_dict['dense_pillar_coords'] = voxel_dense['coordinates']
        data_dict['voxels'] = voxels
        data_dict['voxel_coords'] = coordinates
        data_dict['voxel_num_points'] = num_points
        return data_dict