Exemple #1
0
def test_sum_kernel_grad():
    npr.seed(1)

    eps = 1e-5
    N = 10
    M = 5
    D = 3

    kernel1 = Matern52(D)
    kernel2 = Matern52(D)
    kernel3 = Matern52(D)
    kernel = SumKernel(kernel1, kernel2, kernel3)

    data1 = npr.randn(N, D)
    data2 = npr.randn(M, D)

    loss = np.sum(kernel.cross_cov(data1, data2))
    dloss = kernel.cross_cov_grad_data(data1, data2).sum(0)

    dloss_est = np.zeros(dloss.shape)
    for i in xrange(M):
        for j in xrange(D):
            data2[i, j] += eps
            loss_1 = np.sum(kernel.cross_cov(data1, data2))
            data2[i, j] -= 2 * eps
            loss_2 = np.sum(kernel.cross_cov(data1, data2))
            data2[i, j] += eps
            dloss_est[i, j] = ((loss_1 - loss_2) / (2 * eps))

    assert np.linalg.norm(dloss - dloss_est) < 1e-6
Exemple #2
0
def test_grad():
    npr.seed(1)

    eps = 1e-5
    N = 10
    M = 5
    D = 5
    inds = [0, 2, 4]

    kernel = Subset(D, Matern52(len(inds)), inds)

    data1 = npr.randn(N, D)
    data2 = npr.randn(M, D)

    loss = np.sum(kernel.cross_cov(data1, data2))
    dloss = kernel.cross_cov_grad_data(data1, data2).sum(0)

    dloss_est = np.zeros(dloss.shape)
    for i in range(M):
        for j in range(D):
            data2[i, j] += eps
            loss_1 = np.sum(kernel.cross_cov(data1, data2))
            data2[i, j] -= 2 * eps
            loss_2 = np.sum(kernel.cross_cov(data1, data2))
            data2[i, j] += eps
            dloss_est[i, j] = (old_div((loss_1 - loss_2), (2 * eps)))

    print('Subset kernel grad using indices %s:' % inds)
    print(dloss)

    assert np.linalg.norm(dloss - dloss_est) < 1e-6
Exemple #3
0
def test_grad():
    npr.seed(1)

    eps = 1e-5
    N = 10
    M = 5
    D = 3

    kernel = Scale(Matern52(D))
    kernel.amp2.value = 5.75

    data1 = npr.randn(N, D)
    data2 = npr.randn(M, D)

    loss = np.sum(kernel.cross_cov(data1, data2))
    dloss = kernel.cross_cov_grad_data(data1, data2).sum(0)

    dloss_est = np.zeros(dloss.shape)
    for i in range(M):
        for j in range(D):
            data2[i, j] += eps
            loss_1 = np.sum(kernel.cross_cov(data1, data2))
            data2[i, j] -= 2 * eps
            loss_2 = np.sum(kernel.cross_cov(data1, data2))
            data2[i, j] += eps
            dloss_est[i, j] = ((loss_1 - loss_2) / (2 * eps))

    assert np.linalg.norm(dloss - dloss_est) < 1e-6
Exemple #4
0
    def _build(self):
        self.params = {}
        self.latent_values = None

        # Build the transformer
        beta_warp = BetaWarp(self.num_dims)
        beta_alpha, beta_beta = beta_warp.hypers
        self.params['beta_alpha'] = beta_alpha
        self.params['beta_beta'] = beta_beta

        transformer = Transformer(self.num_dims)
        transformer.add_layer(beta_warp)

        # Build the component kernels
        input_kernel = Matern52(self.num_dims)
        ls = input_kernel.hypers
        self.params['ls'] = ls

        # Now apply the transformation.
        transform_kernel = TransformKernel(input_kernel, transformer)

        # Add some perturbation for stability
        stability_noise = Noise(self.num_dims)

        # Finally make a noisy version if necessary
        # In a classifier GP the notion of "noise" is really just the scale.
        if self.noiseless:
            self._kernel = SumKernel(transform_kernel, stability_noise)
        else:
            scaled_kernel = Scale(transform_kernel)
            self._kernel = SumKernel(scaled_kernel, stability_noise)
            amp2 = scaled_kernel.hypers
            self.params['amp2'] = amp2

        # Build the mean function (just a constant mean for now)
        self.mean = Hyperparameter(initial_value=0.0,
                                   prior=priors.Gaussian(0.0, 1.0),
                                   name='mean')
        self.params['mean'] = self.mean

        # Buld the latent values. Empty for now until the GP gets data.
        self.latent_values = Hyperparameter(initial_value=np.array([]),
                                            name='latent values')

        # Build the samplers
        to_sample = [self.mean] if self.noiseless else [self.mean, amp2]
        self._samplers.append(
            SliceSampler(*to_sample, compwise=False, thinning=self.thinning))
        self._samplers.append(
            WhitenedPriorSliceSampler(ls,
                                      beta_alpha,
                                      beta_beta,
                                      compwise=True,
                                      thinning=self.thinning))
        self.latent_values_sampler = EllipticalSliceSampler(
            self.latent_values, thinning=self.ess_thinning)
Exemple #5
0
def test_grad():
    npr.seed(1)

    eps = 1e-5
    N = 10
    M = 5
    D = 5

    beta_warp = BetaWarp(2)
    norm = Normalization(2)
    lin = Linear(D)
    transformer = Transformer(D)
    # Each entry is a tuple, (transformation, indices_it_acts_on)
    transformer.add_layer(
        (beta_warp, [0, 2]),
        (norm, [1, 4]))  # This is crazy. We would never do this.
    # One transformation means apply to all dimensions.
    transformer.add_layer(lin)

    kernel = TransformKernel(Matern52(lin.num_factors), transformer)

    data1 = npr.rand(N, D)
    data2 = npr.rand(M, D)

    loss = np.sum(kernel.cross_cov(data1, data2))
    dloss = kernel.cross_cov_grad_data(data1, data2).sum(0)

    dloss_est = np.zeros(dloss.shape)
    for i in xrange(M):
        for j in xrange(D):
            data2[i, j] += eps
            loss_1 = np.sum(kernel.cross_cov(data1, data2))
            data2[i, j] -= 2 * eps
            loss_2 = np.sum(kernel.cross_cov(data1, data2))
            data2[i, j] += eps
            dloss_est[i, j] = ((loss_1 - loss_2) / (2 * eps))

    assert np.linalg.norm(dloss - dloss_est) < 1e-6