def notchOld(): cys = CyNetwork() filename = '/Users/vikash/Documents/MATLAB/MetSignal/REACTOME_SBML2/Signaling_by_EGFR.xml' species, reactions_info = parse_xml_reactome(filename) cofactorsID = [ 'AMP [cytosol]', 'Pi [nucleoplasm]', 'Ca2+ [cytosol]', 'H2O [cytosol]', 'GDP [cytosol]', 'ATP [cytosol]', 'Ub [cytosol]', 'ADP [nucleoplasm]', 'ADP [cytosol]', 'Pi [cytosol', 'ATP [nucleoplasm]', 'GTP [cytosol]' ] out = open('egfr.txt', 'w') # species dictionary new_species = {} for k, v in species.items(): new_species[v[0]] = v[0].split('[')[0] print v[0] out.write("%s\n" % v[0]) for k, v in reactions_info.items(): new_species[k] = '' import pdb pdb.set_trace() rInfo, labels, newIds = regenReaction(reactions_info, new_species, cofactorsID) node_list, edge_list = cys.createNodeEdgeCofactor(rInfo, labels, newIds) cys.createCysNet(node_list, edge_list)
def drawNet(netFile,rxnFile): rxnList=read_1col(rxnFile) temp = pickle.load(open(netFile)) reactions_info=temp[2] new_rInfo = {} for k in rxnList: if (k in (temp[0]['rxns'])) & (k in reactions_info.keys()): # this is just for signaling reactions E = reactions_info[k]['M'] ind = temp[0]['rxns'].index(k) act = temp[0]['activators'][ind] inh = temp[0]['inhibitors'][ind] if not (act == 'NA'): acts = act.split('|') for a in acts: if a in temp[1].keys(): name = temp[1][a][0]; elif a in temp[0]['rashmiv']: name = temp[0]['rashmik'][temp[0]['rashmiv'].index(a)] else: name = a; print a E.append(name) I = [] if not (inh == 'NA'): acts = inh.split('|') for a in acts: if a in temp[1].keys(): name = temp[1][a][0]; elif a in temp[0]['rashmiv']: name = temp[0]['rashmik'][temp[0]['rashmiv'].index(a)] else: name = a; print a I.append(name) new_rInfo[k] = {'S': reactions_info[k]['S'], 'P': reactions_info[k]['P'], 'E': E, 'I': I} # now we want to create network on cytoscape # new_rInfo {'reaction_1980109': {'I': [], 'P': ['NICD1:DTX [cytosol]'], 'S': ['CNTN1:NOTCH1:DTX [plasma membrane]'], #'E': ['gamma-secretase complex [plasma membrane]']}, # species_label species can be repalced # cofactorsID list of cofactor Ids cofactorsID=[] cys = CyNetwork() species_label={} rInfo, labels, newIds = regenReaction(new_rInfo, species_label, cofactorsID) node_list, edge_list = cys.createNodeEdgeCofactor(rInfo, labels, newIds) cys.createCysNet(node_list, edge_list)
def notchViz(): Info=pickle.load(open('/Users/vikashpandey/Documents/PyCytoscape/VisPathways/notch.pickle')) for k in Info[0].keys(): print k import pdb;pdb.set_trace() cofactorsID = ['AMP [cytosol]', 'Pi [nucleoplasm]', 'Ca2+ [cytosol]', 'H2O [cytosol]', 'GDP [cytosol]', 'ATP [cytosol]', 'Ub [cytosol]', 'ADP [nucleoplasm]', 'ADP [cytosol]', 'Pi [cytosol', 'ATP [nucleoplasm]', 'GTP [cytosol]'] cys = CyNetwork() rInfo, labels, newIds = regenReaction(Info[0], Info[1],cofactorsID) node_list, edge_list = cys.createNodeEdgeCofactor(rInfo, labels, newIds) cys.createCysNet(node_list, edge_list)
def notch1Vizualize(vizFile): Info = pickle.load(open(vizFile)) # for k in Info[0].keys(): # print k # import pdb;pdb.set_trace() # Info[0] : rxn Info # Info[1]: is label #import pdb;pdb.set_trace() cofactorsID = [ 'AMP [cytosol]', 'Pi [nucleoplasm]', 'Ca2+ [cytosol]', 'H2O [cytosol]', 'GDP [cytosol]', 'ATP [cytosol]', 'Ub [cytosol]', 'ADP [nucleoplasm]', 'ADP [cytosol]', 'Pi [cytosol', 'ATP [nucleoplasm]', 'GTP [cytosol]' ] cys = CyNetwork() rInfo, labels, newIds = regenReaction(Info[0], Info[1], cofactorsID) node_list, edge_list = cys.createNodeEdgeCofactor(rInfo, labels, newIds) cys.createCysNet(node_list, edge_list)
def egfViz(): # This is the xml file for the egf network. we can use this to parse any network fin = '/Users/vikashpandey/Documents/MATLAB/reDoMetSignal/testModels/R-HSA-177929_EGFR.xml' species, reactions_info = parse_xml_reactome(fin) # step 2 # we want take information from pickle signaling model because signaling model is more complete import pickle sigf = '/Users/vikashpandey/Documents/MATLAB/reDoMetSignal/SignalingAnalysis/PythonData/DataPickle/Signaling.pickle' data = pickle.load(open(sigf)) species = data[0] rxnInfo = data[1] # find reaction and specis info of reduced model from signaling model rInfo = {} for rxn in reactions_info.keys(): newRxn = rxn.replace('reaction_', 'R-HSA-') if newRxn in rxnInfo.keys(): rInfo[newRxn] = rxnInfo[newRxn] else: print rxn #import pdb;pdb.set_trace() new_rInfo, new_species=collectNewNet(rInfo) # visualize with new data cofactorsID = ['AMP [cytosol]', 'Pi [nucleoplasm]', 'Ca2+ [cytosol]', 'H2O [cytosol]', 'GDP [cytosol]', 'ATP [cytosol]', 'Ub [cytosol]', 'ADP [nucleoplasm]', 'ADP [cytosol]', 'Pi [cytosol]', 'ATP [nucleoplasm]', 'GTP [cytosol]'] cys = CyNetwork() rInfo, labels, newIds = regenReaction(new_rInfo, new_species,cofactorsID) f= '/Users/vikashpandey/Documents/MATLAB/reDoMetSignal/SignalingAnalysis/PythonData/DataPickle/proteinShortName.pickle' proteinShortName = pickle.load(open(f)) new_labels={} for k,v in labels.items(): if k in proteinShortName.keys(): new_labels[k]=proteinShortName[k] else: new_labels[k]=v node_list, edge_list = cys.createNodeEdgeCofactor(rInfo, new_labels,newIds) cys.createCysNet(node_list, edge_list)
def rxnWiseViz_Maria(): # This function takes input as reactions as a text file f="/Users/vikash/switchdrive2/RedoConnectMetSig/Data/signaling_viz.txt" rxns=read_1col(f) import pickle sigf='/Users/vikash/Desktop/consign/ExceptMetabolismNew.pickle' # sigf = '/Users/vikash/switchdrive2/RedoConnectMetSig/Data/Signaling.pickle' data = pickle.load(open(sigf)) species = data[0] rxnInfo = data[1] # find reaction and specis info of reduced model from signaling model rInfo = {} for rxn in rxns: if rxn in rxnInfo.keys(): rInfo[rxn] = rxnInfo[rxn] else: print "this is not found in the siganling network= %s"%rxn # import pdb; # pdb.set_trace() # import pdb;pdb.set_trace() new_rInfo, new_species = collectNewNet(rInfo) # visualize with new data cofactorsID = ['AMP [cytosol]', 'Pi [nucleoplasm]', 'Ca2+ [cytosol]', 'H2O [cytosol]', 'GDP [cytosol]', 'ATP [cytosol]', 'Ub [cytosol]', 'ADP [nucleoplasm]', 'ADP [cytosol]', 'Pi [cytosol]', 'ATP [nucleoplasm]', 'GTP [cytosol]'] cys = CyNetwork() rInfo, labels, newIds = regenReaction(new_rInfo, new_species, cofactorsID) f = '/Users/vikash/switchdrive2/RedoConnectMetSig/Data/proteinShortName.pickle' proteinShortName = pickle.load(open(f)) new_labels = {} for k, v in labels.items(): if k in proteinShortName.keys(): new_labels[k] = proteinShortName[k] else: new_labels[k] = v node_list, edge_list = cys.createNodeEdgeCofactor(rInfo, new_labels, newIds) cys.createCysNet(node_list, edge_list)