format=
    "%(asctime)s :: %(filename)s:%(lineno)s :: %(funcName)s() ::    %(message)s"
)
logger = logging.getLogger('userMovement_rf')

data_path = '../../allan_data/DataPredictMovement_half.p'
x, y = np.load(data_path)
df = pd.DataFrame(
    x, columns=[f"{cha}{qrt}" for cha in "CSGB" for qrt in range(1, 9)])
df = df[['B7', 'B3', 'G7']]
x = df.values
del df
# x = x.astype(float)
logger.info(f"Loaded data")

jn = pushbulletNotifier.JobNotification(devices="phone")
jn.send(message="Started CV for RF grid with just 3 features: B7, B3 and G7.")

processes = 12
try:
    x_re, x_va, y_re, y_va = model_selection.train_test_split(x,
                                                              y,
                                                              test_size=0.2,
                                                              stratify=y)
    logger.info(f"Split data in to training set and validation set.")
    pipe = Pipeline([('rf',
                      RandomForestClassifier(criterion='entropy',
                                             class_weight=None))])
    param_grid = {
        'rf__n_estimators': np.arange(40, 100, 10),
        'rf__max_depth': np.arange(13, 20)
Exemple #2
0
from sklearn import pipeline

# from imblearn import over_sampling
# from imblearn import pipeline as imb_pipeline
# from imblearn import metrics as imb_metrics

# import warnings  # noqa
# warnings.simplefilter("ignore", category=DeprecationWarning)
# warnings.simplefilter("ignore", category=mpl.cbook.mplDeprecation)
# warnings.simplefilter("ignore", category=UserWarning)

# ****************************************************************************
# *                      Instantiate Pushbullet notifier                     *
# ****************************************************************************

pbn = pushbulletNotifier.JobNotification()

# ****************************************************************************
# *                       Settings for cross validation                      *
# ****************************************************************************

k_folds = 7
n_jobs = 40

cv_args = dict(
    scoring='roc_auc',  # noqa
    cv=k_folds,  # noqa
    verbose=49,  # noqa
    refit=True,  # noqa
    n_jobs=n_jobs,  # noqa
    # pre_dispatch = 2 * n_jobs,  # noqa