Exemple #1
0
def _omega_pm_spectrum_odd_c(n: int, field: 'Field', sign: int) -> Iterable[int]:
    """Spectra of Omega^e_{2n}(q) for odd q.
    Based on [1, Corollary 8] and [3, Lemma 2.3]
    Point 3 of [1, Corollary 8] contains an error
    that was corrected in [3, Lemma 2.3]
    """
    n //= 2
    q = field.order
    p = field.char

    def nk(k):
        return (p ** (k - 1) + 3) // 2

    # (1)
    a1 = [(q ** n - sign) // 2]

    # (2)
    a2 = SemisimpleElements(q, n, min_length=2, parity=sign)

    # (3)
    a3 = []
    k = 1
    while True:
        n_k = nk(k)
        if n_k >= n:
            break
        for delta in [1, -1]:
            dk = gcd(4, q ** n_k - sign * delta) // 2
            a3.append(
                p ** k *
                lcm(
                    dk,
                    (q**(n - n_k) - delta) // dk
                )
            )
        k += 1

    # (4)
    a4 = MixedElements(q, n, nk, lambda k: p ** k, min_length=2)

    # (5)
    a5 = []
    for elem in SemisimpleElements(q, n - 2, min_length=2, parity=sign):
        a5.append(elem.lcm(SpectraElement(p, q, [1], [-1])))
        a5.append(elem.lcm(SpectraElement(p, q, [1], [1])))

    # (6)
    t = (q ** (n - 2) - sign) // 2
    a6 = [p * lcm(q - 1, t), p * lcm(q + 1, t)]

    # (7)
    k = numeric.get_exponent(2 * n - 3, p)
    a7 = [] if k is None else [p * (2 * n - 3) * gcd(4, q ** n - sign) // 2]

    # (8)
    a8 = [p * (q * q - 1), p * (q * q + 1)] if n == 4 and sign == 1 else []

    # (9)
    a9 = [9 * (q - 1), 9 * (q + 1)] if n == 4 and p == 3 and sign == 1 else []
    return itertools.chain(a1, a2, a3, a4, a5, a6, a7, a8, a9)
Exemple #2
0
    def spectrum(n, field):
        n //= 2
        q = field.order
        p = field.char
        # if gcd(4, q^n-e) != 4, then POmega = Omega
        b = (q % 4 == 3 and n % 2 == 1) if e == -1 else (
            q % 4 == 1)  # true iff gcd(4, q^n-e)=4
        if not b:
            return _omega_pm_spectrum(e)(n * 2, field)

        nk = lambda k: (p**(k - 1) + 3) // 2

        # (1)
        a1 = [(q**n - sign) // 4]

        # (2)
        a2 = []
        for n1 in xrange(1, n):
            for e1 in [-1, 1]:
                a = q**n1 - e1
                b = q**(n - n1) - e * e1
                d = 2 if _equal_two_part(a, b) else 1
                a2.append(lcm(a, b) // d)

        # (3)
        a3 = SemisimpleElements(q, n, min_length=3, parity=sign)

        # (4)
        a4 = []
        k = 1
        while True:
            n_k = nk(k)
            if n_k >= n:
                break
            a4.append(p**k * (q**(n - n_k) + 1) // 2)
            a4.append(p**k * (q**(n - n_k) - 1) // 2)
            k += 1

        # (5)
        a5 = MixedElements(q, n, nk, lambda k: p**k, min_length=2)

        # (6)
        a6 = []
        for elem in SemisimpleElements(q, n - 2, min_length=2, parity=sign):
            a6.append(elem.lcm(SpectraElement(p, q, [1], [-1])))
            a6.append(elem.lcm(SpectraElement(p, q, [1], [1])))

        # (7)
        t = (q**(n - 2) - sign) // 2
        a7 = [p * lcm(q - 1, t), p * lcm(q + 1, t)]

        # (8)
        k = numeric.get_exponent(2 * n - 3, p)
        a8 = [] if k is None else [p * (2 * n - 3)]
        return itertools.chain(a1, a2, a3, a4, a5, a6, a7, a8)
Exemple #3
0
def _omega_pm_spectrum_odd_c(n, field, sign):
    """Spectra of Omega^e_{2n}(q) for odd q.
    [1, Corollary 8]
    """
    n //= 2
    q = field.order
    p = field.char
    nk = lambda k: (p**(k - 1) + 3) // 2

    # (1)
    a1 = [(q**n - sign) // 2]

    # (2)
    a2 = SemisimpleElements(q, n, min_length=2, parity=sign)

    # (3)
    a3 = []
    k = 1
    while True:
        n_k = nk(k)
        if n_k >= n:
            break
        dk = gcd(4, q**n_k - sign) // 2
        a3.append(p**k * lcm(dk, (q**(n - n_k) + 1) // dk))
        a3.append(p**k * lcm(dk, (q**(n - n_k) - 1) // dk))
        k += 1

    # (4)
    a4 = MixedElements(q, n, nk, lambda k: p**k, min_length=2)

    # (5)
    a5 = []
    for elem in SemisimpleElements(q, n - 2, min_length=2, parity=sign):
        a5.append(elem.lcm(SpectraElement(p, q, [1], [-1])))
        a5.append(elem.lcm(SpectraElement(p, q, [1], [1])))

    # (6)
    t = (q**(n - 2) - sign) // 2
    a6 = [p * lcm(q - 1, t), p * lcm(q + 1, t)]

    # (7)
    k = numeric.get_exponent(2 * n - 3, p)
    a7 = [] if k is None else [p * (2 * n - 3) * gcd(4, q**n - sign) // 2]

    # (8)
    a8 = [p * (q * q - 1), p * (q * q + 1)] if n == 4 and sign == 1 else []

    # (9)
    a9 = [9 * (q - 1), 9 * (q + 1)] if n == 4 and p == 3 and sign == 1 else []
    return itertools.chain(a1, a2, a3, a4, a5, a6, a7, a8, a9)
Exemple #4
0
    def spectrum(n: int, field: 'Field') -> Iterable[int]:
        q = field.order
        p = field.char

        # (1)
        eps = 1 if n % 2 == 0 else e
        a1 = [(q ** n - eps) // (q - e)]

        # (2)
        a2 = SemisimpleElements(q, n, min_length=2, sign=e)

        # (3)
        a3 = []
        k = 1
        d = gcd(n, q - e)
        while True:
            n1 = n - p ** (k - 1) - 1
            if n1 < 1:
                break
            eps = 1 if n1 % 2 == 0 else e
            a3.append(p ** k * (q ** n1 - eps) // gcd(d, n1))
            k += 1

        # (4)
        a4 = MixedElements(q, n,
                           lambda k: p ** (k - 1) + 1,
                           lambda k: p ** k, min_length=2, sign=e)

        # (5)
        k = numeric.get_exponent(n - 1, p)
        a5 = [] if k is None else [p * (n - 1) * d]

        # (6)
        a6 = [p * gcd(2, q - 1) * (q + e)] if n == 4 else []
        return itertools.chain(a1, a2, a3, a4, a5, a6)
Exemple #5
0
def _omega_spectrum_odd_c(n: int, field: 'Field') -> Iterable[int]:
    """Spectra of groups \Omega_{2n+1}(q) for odd q.
    [1, Corollary 6]
    """
    n = (n - 1) // 2
    q = field.order
    p = field.char

    # (1)
    t = (q ** n - 1) // 2
    a1 = [t, t + 1]

    # (2)
    a2 = SemisimpleElements(q, n, min_length=2)

    # (3)
    k = 1
    a3 = []
    while True:
        n1 = n - (p ** (k - 1) + 1) // 2
        if n1 < 1:
            break
        t = (q ** n1 - 1) // 2
        a3.extend([t * p ** k, (t + 1) * p ** k])
        k += 1

    # (4)
    a4 = MixedElements(q, n,
                       lambda k: (p ** (k - 1) + 1) // 2,
                       lambda k: p ** k, min_length=2)

    # (5)
    k = numeric.get_exponent(2 * n - 1, p)
    a5 = [] if k is None else [p * (2 * n - 1)]
    return itertools.chain(a1, a2, a3, a4, a5)
Exemple #6
0
def _symplectic_spectrum_even_c(n, field):
    """Spectra of symplectic groups in characteristic 2.
    [2, Corollary 3]
    """
    n //= 2
    q = field.order

    # (1)
    a1 = SemisimpleElements(q, n)

    # (2)
    a2 = (2 * elem for elem in SemisimpleElements(q, n - 1))

    # (3)
    a3 = MixedElements(q, n, lambda k: 2**(k - 1) + 1, lambda k: 2**(k + 1))

    # (4)
    k = numeric.get_exponent(n - 1, 2)
    a4 = [] if k is None else [(n - 1) * 4]
    return itertools.chain(a1, a2, a3, a4)
Exemple #7
0
def _omega_pm_spectrum_even_c(n: int, field: 'Field', sign: int) -> Iterable[int]:
    """Spectra for groups \Omega^{\pm}(2^k).
    [1, Corollary 4]
    """
    n //= 2
    q = field.order

    # (1)
    a1 = SemisimpleElements(q, n, parity=sign)

    # (2)
    a2 = MixedElements(q, n,
                       lambda k: 2 ** (k - 1) + 2,
                       lambda k: 2 ** (k + 1))

    # (3)
    a3 = (2 * elem for elem in SemisimpleElements(q, n - 2))

    # (4)
    a4 = []
    for elem in SemisimpleElements(q, n - 2, parity=sign):
        a4.append(2 * lcm(q - 1, elem))
        a4.append(2 * lcm(q + 1, elem))

    # (5)
    a5 = []
    signMod = 0 if sign == 1 else 1
    for ni in FullBoundedSets(n - 3):
        if len(ni) % 2 != signMod:
            continue
        a5.append(4 * SpectraElement(q=q, partition=[1] + ni,
                                     signs=[-1] + [1] * len(ni)))

    # (6)
    a6 = (elem.lcm(SpectraElement(4, q, [1], [1])) for elem in SemisimpleElements(q, n - 3, parity=-sign))

    # (7)
    k = numeric.get_exponent(n - 2, 2)
    a7 = [] if k is None else [4 * (n - 2)]
    return itertools.chain(a1, a2, a3, a4, a5, a6, a7)
Exemple #8
0
    def spectrum(n, field):
        n //= 2
        q = field.order
        p = field.char

        # (1)
        a1 = SemisimpleElements(q, n, parity=e)

        # (2)
        a2 = MixedElements(q, n, lambda k: (p**(k - 1) + 3) // 2,
                           lambda k: p**k)

        # (3)
        a3 = []
        for elem in SemisimpleElements(q, n - 2, parity=e):
            a3.append(elem.lcm(SpectraElement(p, q, [1], [-1])))
            a3.append(elem.lcm(SpectraElement(p, q, [1], [1])))

        # (4)
        k = numeric.get_exponent(2 * n - 3, p)
        a4 = [] if k is None else [2 * p * (2 * n - 3)]
        return itertools.chain(a1, a2, a3, a4)
Exemple #9
0
    def spectrum(n, field):
        q = field.order
        p = field.char
        d = gcd(n, q - e)

        # (1)
        eps = 1 if n % 2 == 0 else e
        a1 = [(q**n - eps) // ((q - e) * d)]

        # (2)
        a2 = []
        eps = lambda s: 1 if s % 2 == 0 else e
        for n1 in xrange(1, (n + 2) // 2):
            pair = (n1, n - n1)
            signs = (-eps(n1), -eps(n - n1))
            a2.append(
                lcm(q**pair[0] + signs[0], q**pair[1] + signs[1]) //
                gcd(n // gcd(n1, n - n1), q - e))

        # (3)
        a3 = SemisimpleElements(q, n, min_length=3, sign=e)

        # (4)
        a4 = []
        k = 1
        while True:
            n1 = n - p**(k - 1) - 1
            if n1 < 1:
                break
            eps = 1 if n1 % 2 == 0 else e
            a4.append(p**k * (q**n1 - eps) / d)
            k += 1

        # (5)
        a5 = MixedElements(q,
                           n,
                           lambda k: p**(k - 1) + 1,
                           lambda k: p**k,
                           min_length=2,
                           sign=e)

        # (6)
        k = numeric.get_exponent(n - 1, p)
        a6 = [] if k is None else [p * (n - 1)]
        return itertools.chain(a1, a2, a3, a4, a5, a6)
Exemple #10
0
def _symplectic_spectrum_odd_c(n, field):
    """Spectra of symplectic groups in odd characteristic.
    [1, Corollary 1]
    """
    n //= 2
    q = field.order
    p = field.char

    # (1)
    a1 = SemisimpleElements(q, n)

    # (2)
    a2 = MixedElements(q, n, lambda k: (p**(k - 1) + 1) // 2, lambda k: p**k)

    # (3)
    k = numeric.get_exponent(2 * n - 1, p)
    a3 = [] if k is None else [2 * p * (2 * n - 1)]
    return itertools.chain(a1, a2, a3)
Exemple #11
0
def _special_orthogonal_odd_c_spectrum(n, field):
    """Spectra of groups SO_{2n+1}(q) for odd q.
    [1, Corollary 5]
    """
    n = (n - 1) // 2
    q = field.order
    p = field.char

    # (1)
    a1 = SemisimpleElements(q, n)

    # (2)
    a2 = MixedElements(q, n, lambda k: (p**(k - 1) + 1) // 2, lambda k: p**k)

    # (3)
    k = numeric.get_exponent(2 * n - 1, p)
    a3 = [] if k is None else [p * (2 * n - 1)]
    return itertools.chain(a1, a2, a3)
Exemple #12
0
    def spectrum(n: int, field: 'Field') -> Iterable[int]:
        q = field.order
        p = field.char

        # (1)
        eps = 1 if n % 2 == 0 else e
        a1 = [(q ** n - eps) // (q - e)]

        # (2)
        a2 = SemisimpleElements(q, n, min_length=2, sign=e)

        # (3)
        a3 = MixedElements(q, n,
                           lambda k: p ** (k - 1) + 1,
                           lambda k: p ** k, sign=e)

        # (4)
        k = numeric.get_exponent(n - 1, p)
        a4 = [] if k is None else [p * (n - 1)]
        return itertools.chain(a1, a2, a3, a4)
Exemple #13
0
    def test_minus(self, params):
        """
        Test elements [q^{n_1}-1, ..., q^{n_k}-1] for all n_1+...+n_k=n
        """
        n, q = params
        ss = SemisimpleElements(q, n, sign=1, verbose=False)

        divisible = set()
        for ni in Partitions(n):
            elem = evaluate(q, ni)
            found = False
            for x in ss:
                if x % elem == 0:
                    if x == elem:
                        divisible.add(x)
                    found = True
            self.assertTrue(found,
                msg="element with base {}, partition {} = {} "\
                    "doesn't divide any of {}".format(str(q), str(ni),
                    str(elem), str(ss)))
        self.assertSetEqual(divisible, set(ss))
Exemple #14
0
def _projective_symplectic_spectrum_odd_c(n, field):
    """Spectra of projective symplectic groups in characteristic 2.
    [1, Corollary 2]
    """
    n //= 2
    q = field.order
    p = field.char

    # (1)
    t = (q**n - 1) // 2
    a1 = [t, t + 1]

    # (2)
    a2 = SemisimpleElements(q, n, min_length=2)

    # (3)
    a3 = MixedElements(q, n, lambda k: (p**(k - 1) + 1) // 2, lambda k: p**k)

    # (4)
    k = numeric.get_exponent(2 * n - 1, p)
    a4 = [] if k is None else [p * (2 * n - 1)]
    return itertools.chain(a1, a2, a3, a4)
Exemple #15
0
    def all_semisimple(self, n, q, min_length=1, parity=0, sign=0):
        # very slow! For every partition of size n it calculates 2^n parity tuples.
        ss = list(
            SemisimpleElements(q,
                               n,
                               min_length=min_length,
                               parity=parity,
                               sign=sign,
                               verbose=False))
        signsMod = 0 if parity == 1 else 1

        divisible = set()
        for ni in Partitions(n, min_length=min_length):
            if sign:
                signs = [[-sign**nk for nk in ni]]
            else:
                signs = Signs(len(ni))
            for ei in signs:
                # skip needless signs
                if parity and ei.count(1) % 2 != signsMod: continue
                elem = evaluate(q, ni, ei)
                # every element must divide at least one of items in ss
                # also every item in ss must be equal to at least one element
                found = False
                for x in ss:
                    if x % elem == 0:
                        if x == elem:
                            divisible.add(x)
                        found = True
                        #self.assertTrue(any(x % elem == 0 for x in ss),
                self.assertTrue(found,
                    msg="element with base {}, partition {} and signs {} = {} "\
                        "doesn't divide any of {}".format(str(q), str(ni),
                        str(ei), str(elem), str(set(ss))))

        self.assertSetEqual(divisible, set(ss))