def testNormalizeMoreIndices(self): '''Normalize raises an error if more than two indices are passed as input''' x = np.arange(10) ind = (2, 5, 3) with self.assertRaises(ValueError): spectrum_functions.normalize(x, ind)
def testNormalize1IndexTuple(self): '''Normalize throws an error if a single index inside a sequence is given''' x = np.arange(10) ind = [3] with self.assertRaises(ValueError): spectrum_functions.normalize(x, ind)
def Normalize(self, ind=None): '''Normalize data to integral''' data_norm = specfun.normalize(self.intensity, ind) return EELSSpectrum(data_norm, SpectrumRange=self.SpectrumRange, dispersion=self.dispersion, ZLP=self.ZLP, units=self.units)
def testNormalize2Indices(self): '''Normalize works as expected when two indices are given''' x = np.arange(10) ind = (2, 5) np.testing.assert_allclose( x/9., spectrum_functions.normalize(x, ind) )
def testNormalize1Index(self): '''Normalize works as expected when a single index is given''' x = np.arange(10) ind = 2 np.testing.assert_allclose( x/2., spectrum_functions.normalize(x, ind) )
def testNormalizeFloatIndex(self): '''Normalize throws an error when given a float index''' x = np.arange(10) ind = 2.4 with self.assertRaises(ValueError): spectrum_functions.normalize(x, ind)