def collate(self, batch): packed = self.pack(batch, return_dict=True) y = np.array( packed.pop("y_list")) if "y" in self.dataset.signature else None packed["a"] = self.dataset.a output = to_mixed(**packed) if len(output) == 1: output = output[0] if y is None: return output else: return output, y
def collate(self, batch): packed = self.pack(batch) packed["a"] = self.dataset.a y = packed.pop("y_list", None) if y is not None: y = np.array(y) output = to_mixed(**packed) output = sp_matrices_to_sp_tensors(output) if len(output) == 1: output = output[0] if y is None: return output else: return output, y
def collate(self, batch): packed = self.pack(batch, return_dict=True) y = np.array(packed.pop("y_list")) if "y" in self.dataset.signature else None packed["a"] = self.dataset.a output = to_mixed(**packed) # Sparse matrices to SparseTensors output = list(output) for i in range(len(output)): if sp.issparse(output[i]): output[i] = sp_matrix_to_sp_tensor(output[i]) output = tuple(output) if len(output) == 1: output = output[0] if y is None: return output else: return output, y