def get_v_sun(kernelMetaFile, utcStartTime): ''' compute radial component of CG towards/away from sun for given utcTime. v_sun: velocity component on the comet-sun-line. ''' spice.furnsh(kernelMetaFile) et = spice.str2et(utcStartTime) state, lightTime = spice.spkezr("CHURYUMOV-GERASIMENKO", et, "J2000", "NONE", "SUN") x = state[0] y = state[1] z = state[2] vx = state[3] vy = state[4] vz = state[5] r_length = np.sqrt(x**2 + y**2 + z**2) r_hat = np.zeros(3) v = np.zeros(3) r_hat[0] = x / r_length r_hat[1] = y / r_length r_hat[2] = z / r_length v[0] = r_hat[0] * vx v[1] = r_hat[1] * vy v[2] = r_hat[2] * vz v_sun = v[0] + v[1] + v[2] return v_sun
def test_bodvXds(self): periState = spice.conics( self.elts, self.t0) self.assertAlmostEqual( spice.vnorm(periState[:3]), self.rpKM, places=11) helioIson = MPC_HELIOCENTRIC_ISON() for jdtt,pos,vel in helioIson.jpv: et = spice.str2et( jdtt ) conicState = spice.conics( self.elts, et ) print( conicState ) print( pos+vel ) self.assertAlmostEqual( spice.vdist(conicState[:3], pos), 0.0, places=3)
def createCompositeTrajectory(body, renderingConfig, parts): trajArray = [] for part in parts: trajArray.append( getObjectTrajectory( body, part['parent'], spice.str2et(part['from'] + ' TDB'), spice.str2et(part['to'] + ' TDB'), part['error'], part['rendering'] if 'rendering' in part else None, part['step'] if 'step' in part else 60)) result = { 'type': 'composite', 'periodStart': min([t['periodStart'] for t in trajArray]), 'periodEnd': max([t['periodEnd'] for t in trajArray]), 'data': trajArray } if renderingConfig: result['rendering'] = renderingConfig return result
def setUp(self): ### Load the kernel spice.furnsh( __file__ ) ### Convert MPC constants to CONICS_C elements ison = MPC_ISON_C_2012_S1() self.rpKM = spice.convrt( ison.qAU, 'AU', 'KM') self.ecc = ison.e self.incRAD = spice.convrt( ison.InclDEG, 'DEGREES', 'RADIANS') self.lnodeRAD = spice.convrt( ison.NodeDEG, 'DEGREES', 'RADIANS') self.argpRAD = spice.convrt( ison.PeriDEG, 'DEGREES', 'RADIANS') self.m0RAD = spice.convrt( ison.M0, 'DEGREES', 'RADIANS') self.t0 = spice.str2et( ison.T0_TDT[0] ) + spice.convrt( ison.T0_TDT[1], 'DAYS', 'SECONDS' ) self.mu = ison.MuM3S2 * 1e-9 self.elts = ( self.rpKM, self.ecc, self.incRAD, self.lnodeRAD, self.argpRAD, self.m0RAD, self.t0, self.mu ) self.ditime = spice.utc2et( '2013-01-16 12:00:00' )
modelFP = open(cfg['SERVERS'][server]['DOCROOT']+"/"+cfg['TYPES']['Coma']['CONFIG']) Models = json.load(modelFP) modelFP.close() pathToExecutable = cfg['SERVERS'][server]['DOCROOT']+"/"+cfg['MODELS']+"/LoS/pyComa/bin" #pathToExecutable = '/Users/ices/www-dev/htdocs/ICES/Models/LoS/pyComa/bin' #pathToExecutable = '/Users/abieler/pyComa/bin' if args.StringMeasurement == 'LOS': print 'LOS hybrid case...' ##################################################################### # get position of s/c and pointing towards Earth from SPICE ##################################################################### spice.furnsh(args.StringKernelMetaFile) Et = spice.str2et(args.StringUtcStartTime) rEarth, lightTime = spice.spkpos("EARTH", Et, "67P/C-G_CSO", "NONE", "ROSETTA") rRosetta, lightTime = spice.spkpos("ROSETTA", Et, "67P/C-G_CSO", "NONE", "CHURYUMOV-GERASIMENKO") rEarth = np.array(rEarth) rRosetta = np.array(rRosetta) * 1000 # transform km to m print 'Distance from comet: %.2e' % (np.sqrt(np.sum(rRosetta ** 2))) # p = normalized vector pointing from s/c to Earth in cso coordinates p = rEarth / np.sqrt(np.sum(rEarth**2)) # rRay = position of rosetta s/c in cso coordinates rRay = np.array([value for value in rRosetta]) ###################################################################### # build line of sight ray xTravel, and extract x, y, z coordinates #######################################################################
def mpoplot(userdates, master_scale=15, demo=False): """ ... explain what this does... """ outdir = '../sample_data/output' # if demo: # shutil.rmtree(outdir) # os.makedirs(outdir) # else: # if not os.path.exists(outdir): # os.makedirs(outdir) # else: # print('\n Uh-oh! The directory {} already exists.'.format( # outdir)) # if yesno(' Do you want to replace it?'): # shutil.rmtree(outdir) # os.makedirs(outdir) # else: # return # Clear and load the kernels that this program requires. spice.kclear() spice.furnsh('epys.mk') # A graphic will be created for each 'date' in 'dates': for date in userdates: et = spice.str2et(date) datestr = (spice.et2utc(et, 'ISOC', 0)) # -- Outer frame ------------------------------------------------- dist_scl = 250.0 elts = getorbelts(date) arg_peri = elts[4] # Opacity of degree frame and Venus graphic frame_op = 0.5 # # Process JD time into calendar time strings # datestr = spice.et2utc(et, 'ISOC', 0) date = '{} {}'.format(datestr.split('T')[0], datestr.split('T')[1]) edate, etime = date.split() eyear = "{}".format(edate.split('-')[0]) emonth = "{0:02d}".format(int(edate.split('-')[1])) eday = "{0:02d}".format(int(edate.split('-')[2])) epoch = "{}/{}/{}".format(eday, emonth, eyear) ep_name = "{}{}{}".format(eyear, emonth, eday) frame = _outerframe(epoch, frmSize=master_scale, frm_op=frame_op, mpoargp=arg_peri) # -- Mercury Planet -------------------------------------------------- # tru_ano = 90 # look_from = 270 # x1 = "{}%".format((100*math.sin(math.radians((tru_ano+90)/2.)))) # x2 = "{}%".format(100-(100*sin(radians((tru_ano+90)/2.)))) angs = range(0, 360, 1) plt.plot(angs, ["{}".format((100 * math.sin(math.radians(x / 2)))) for x in angs], 'yo-') plt.plot(angs, ["{}".format(100 - (100 * math.sin(math.radians(x / 2)))) for x in angs], 'ro-') # plt.show() stop1 = "#C8C5E2" # stop2 = "#373163" defs = svg.SVG("defs", svg.SVG("linearGradient", svg.SVG("stop", stop_color=stop1, stop_opacity=1, offset="45%"), svg.SVG("stop", stop_color=stop1, stop_opacity=1, offset="55%"), x1="0%", y1="0%", x2="100%", y2="0%", spreadMethod="pad", id="mercGrad") ) # defs = svg.SVG('defs', # svg.SVG('radialGradient', # svg.SVG('stop', # stop_color=stop1, # stop_opacity=1, # offset='38%'), # svg.SVG('stop', # stop_color=stop2, # stop_opacity=1, # offset='40%'), # cx='50%', cy='50%', # fx='230%', fy='50%', # r='300%', # spreadMethod='pad', # id='mercGrad') # ) merc_rad = 2439.99 # km merc_rad_scl = merc_rad / dist_scl merc_ball = svg.Ellipse(0, 0, 0, merc_rad_scl, merc_rad_scl, fill="url(#mercGrad)", stroke_width="0.15pt") # -- MPO Orbit -- mpo_orb_ecc = 0.163229 mpo_orb_sma = 3394.0 # km mpo_orb_sma_scl = mpo_orb_sma / dist_scl mpo_orb_smi_scl = mpo_orb_sma_scl * math.sqrt(1 - mpo_orb_ecc ** 2) # Make things cleaner a = mpo_orb_sma_scl b = mpo_orb_smi_scl mpo_orb = svg.Ellipse(-math.sqrt(a ** 2 - b ** 2), 0, 0, a, b, fill="none", stroke_width="0.25pt") # apof = 8 mpo_orb_apses = svg.Line(-_rellipse(a, b, 180) - 5, 0, _rellipse(a, b, 0) + 10, 0, stroke_width="0.15pt", stroke_dasharray="2, 2") dot_angs = range(0, 360, 20) dots = [_orbitdot(a, b, x, color="black") for x in dot_angs] mpo_orb_dots = svg.Fig() for dot in dots: mpo_orb_dots.d.append(dot) mpo_orb_trans = svg.rotate(arg_peri, 0, 0) mpo_orb_plot = svg.Fig(mpo_orb, mpo_orb_apses, mpo_orb_dots, trans=mpo_orb_trans) # -- Direction arrow ------------------------------------------------- dirarend = svg.make_marker("dirarrowend", "arrow_end", fill_opacity=0.2) dirarend.attr["markerWidth"] = 7.5 x1, y1 = master_scale + 1, 0.4, x2, y2 = master_scale + 1, 1 dirarwstrt = svg.Line(x1, y1, x2, y2, stroke_width=".4pt", stroke_opacity=0.2, arrow_end=dirarend) dirarw = svg.Fig(dirarwstrt, trans="x*cos(y), x*sin(y)") # -- Apsis view ------------------------------------------------------ apvx, apvy = master_scale + 3, -master_scale - 3 apsisviewball = svg.Ellipse(apvx, apvy, 0, merc_rad_scl * 0.25, merc_rad_scl * 0.25, fill="url(#mercGrad)", stroke_width="0.15pt") apsisviewlats = svg.Fig() for x in range(-9, 10, 3): hscl = math.sin(math.radians(x * 10)) wscl = math.cos(math.radians(x * 10)) x1 = apvx - (merc_rad_scl * 0.25 * wscl) y1 = apvy + (merc_rad_scl * 0.25 * hscl) x2 = apvx + (merc_rad_scl * 0.25 * wscl) y2 = apvy + (merc_rad_scl * 0.25 * hscl) apsisviewlats.d.append(svg.Line(x1, y1, x2, y2, stroke_width=".2pt", stroke_opacity=0.4)) apvarend = svg.make_marker("apvarrowend", "arrow_end", fill_opacity=0.6) apvarend.attr["markerWidth"] = 3.0 apvarend.attr["markerHeight"] = 3.0 x1, y1 = apvx, apvy - 3 x2, y2 = apvx, apvy + 3 apsisvieworbit = svg.Line(x1, y1, x2, y2, stroke_width=".4pt", stroke_opacity=0.6, arrow_end=apvarend) xd = apvx yd = apvy + (merc_rad_scl * 0.25 * math.sin(math.radians(arg_peri))) apsisviewdot = svg.Fig(svg.Dots([(xd, yd)], svg.make_symbol("apsisdot", fill="black", fill_opacity=0.6 ), 0.6, 0.6 ) ) apsisview = svg.Fig(apsisviewball, apsisviewlats, apsisvieworbit, apsisviewdot) # -- Build final figure ---------------------------------------------- wa = master_scale * 1.5 svgout = svg.Fig(frame, merc_ball, mpo_orb_plot, dirarw, apsisview ).SVG(svg.window(-wa, wa, -wa, wa)) svgout.prepend(defs) argp = int(arg_peri) svgout.save(os.path.join(outdir, "mpo_orbit_plot_{}_{}.svg".format(ep_name, argp) ) )
def planetsplot(userdates=None, delta="1d", master_scale=15, demo=False, showplots=False): """ ... explain what this does... """ outdir = './sample_data/output' # if demo: # shutil.rmtree(outdir) # os.makedirs(outdir) # else: # if not os.path.exists(outdir): # os.makedirs(outdir) # else: # print('\n Uh-oh! The directory {} already exists.'.format( # outdir)) # if yesno(' Do you want to replace it?'): # shutil.rmtree(outdir) # os.makedirs(outdir) # else: # return orbitdata = _gatherorbitdata(delta=delta, scale=master_scale) ets, dates, orbits, argps, argpxys, nus = orbitdata if userdates is None: userdates = dates if showplots: plt.subplot(1, 1, 1) for xy in orbits: plt.plot([x[0] for x in xy], [y[1] for y in xy], 'rx', label='SPICE') for xy in argpxys: plt.plot(xy[0], xy[1], 'go') plt.show() if len(orbits[0]) == len(dates) == len(ets): # This rotation will put the Hermean perihelion on the X-axis. rotang = -argps[0] # Load the kernels that this program requires. spice.kclear() this_dir = os.path.dirname(os.path.realpath(__file__)) spice.furnsh(os.path.join(this_dir, 'epys.mk')) output_files = [] # A graphic will be created for each 'date' in 'userdates': for date in userdates: # get the position-index of the 'et' in the 'orbitdata' list # of 'ets' that is closest to the 'date' in the 'userdates' et = spice.str2et(date) dx = ets.index(getclosest(ets, et)) # -- Outer frame ------------------------------------------------- # Opacity of degree frame and Venus graphic frame_op = 0.8 # Process calendar time strings date = '{} {}'.format(spice.et2utc(et, 'ISOC', 0).split('T')[0], spice.et2utc(et, 'ISOC', 0).split('T')[1]) edate, etime = date.split() eyear = "{}".format(edate.split('-')[0]) emonth = "{0:02d}".format(int(edate.split('-')[1])) eday = "{0:02d}".format(int(edate.split('-')[2])) epoch = "{}/{}/{}".format(eday, emonth, eyear) ep_name = "{}{}{}_{}".format(eyear, emonth, eday, etime.replace(':', '')) frame = _outerframe(epoch, frmSize=master_scale, frm_op=frame_op) # -- First Point of Aires ---------------------------------------- # merc_loan = 48.331 # merc_argp = 29.124 arend = svg.make_marker("fopa_arrowend", "arrow_end", fill_opacity=0.4) x1, y1 = 10, 0 x2, y2 = master_scale * 1.3, 0 fpoa = svg.Line(x1, y1, x2, y2, stroke_width=".4pt", stroke_opacity=0.4, arrow_end=arend) xp = (x2 * math.cos(math.radians(rotang)) - y2 * math.sin(math.radians(rotang))) yp = (x2 * math.sin(math.radians(rotang)) + y2 * math.cos(math.radians(rotang))) fpoa_text = svg.Text(xp + 6.5, yp - 1.0, "First Point of Aries", font_size=3, opacity=0.75) fpoa = svg.Fig(svg.Fig(fpoa, trans=svg.rotate(rotang, 0, 0)), fpoa_text) # -- Some containers --------------------------------------------- orbs = [] circles = [] defs = svg.SVG("defs") # -- Orbit circles ----------------------------------------------- # Build the SVG for each orbit. for orbit in orbits: if orbits.index(orbit) == 1: orbit_op = 0.4 else: orbit_op = 1.0 # Mercury's orbit will have perihelion on the X-axis circles.append(svg.Fig(svg.Poly(orbit, stroke_width=".25pt", stroke_opacity=orbit_op), trans=svg.rotate(rotang, 0, 0))) # -- Planet orbs ------------------------------------------------- points = [orbits[0][dx], orbits[1][dx], orbits[2][dx]] # Build the planet orb for each planet for this chart. for point in points: # Planetary inputs ... if points.index(point) == 0: name = "MERCURY" nu = math.degrees(math.atan2(point[1], point[0])) + rotang if nu < 0: nu = nu + 360 # print(nu, nu-rotang, rotang) nu = "{0:03d}".format(int(nu)) if points.index(point) == 1: name = "VENUS" if points.index(point) == 2: name = "EARTH" # point_r = [x/AU for x in point] orb, grad = _planetdiag(name, point, rotang) orbs.append(orb) defs.append(grad) # -- Build final figure ------------------------------------------ wa = master_scale * 1.5 svgout = svg.Fig(fpoa, frame, circles[0], circles[1], circles[2], orbs[0], orbs[1], orbs[2] ).SVG(svg.window(-wa, wa, -wa, wa)) svgout.prepend(defs) out_path = os.path.join(outdir, "merc_orbit_plot_{}_{}.svg".format( ep_name, nu)) svgout.save(out_path) output_files.append(out_path) spice.kclear() return output_files else: # You'll jump to hear if the epochs for all 3 planets are not equal. print("There is an epoch error between the planet time values...")
def _gatherorbitdata(delta="1d", scale=15, verbose=False): # print("Building orbit for planets with SPICE...") spice.kclear() # Load the kernels that this program requires. this_dir = os.path.dirname(os.path.realpath(__file__)) spice.furnsh(os.path.join(this_dir, 'epys.mk')) # convert starting epoch to ET et0 = spice.str2et('2024/05/07 00:00') rate = 24 * 2 # Every 30 mins days = [(et0 + (day * (86400 / rate))) for day in range(366 * rate)] # internal variables and constants planets = ("MERCURY", "VENUS", "EARTH") AU = consts.AU / 1000. # AU [km] argps = [] argpxys = [] xyvecs = [] nuvecs = [] for planet in planets: # print(" > {}".format(planet)) dates = [] rvec = [] # vector of centric radii xyvec = [] # vector of (x,y) coordinates nuvec = [] # vector of nu (True Anomaly) values incvec = [] # vector of inclination values for et in days: if verbose: print('ET Seconds Past J2000: {}'.format(et)) # Compute the apparent state of MERCURY as seen from # the SUN in ECLIPJ2000 starg, ltime = spice.spkezr(planet, et, 'ECLIPJ2000', 'NONE', 'SUN') x, y, z, vx, vy, vz = [el / AU * scale for el in starg] r = math.sqrt(x ** 2 + y ** 2 + z ** 2) if verbose: print('\nApparent state of MERCURY as seen from', ' Sun in the J2000:') print(' X = {:10.4f} km (LT+S)'.format(x)) print(' Y = {:10.4f} km (LT+S)'.format(y)) print(' Z = {:10.4f} km (LT+S)'.format(z)) print('VX = {:10.4f} km/s (LT+S)'.format(vx)) print('VY = {:10.4f} km/s (LT+S)'.format(vy)) print('VZ = {:10.4f} km/s (LT+S)'.format(vz)) # calculate orbital elements from the starg state vector elts = spice.oscelt(starg, et, planetmu('Sun')) # define a solver for Kepler's equation ks = pyasl.MarkleyKESolver() # solve for the Eccentric Anomaly (E) with the # Mean Anomaly (M = elts[5]) and the # Eccentricity (ecc = elts[1]) E = ks.getE(elts[5], elts[1]) # calculate the True Anomaly (nu) from E and ecc (elts[1]) nuarg1 = math.sqrt(1 - elts[1]) * math.cos(E / 2) nuarg2 = math.sqrt(1 + elts[1]) * math.sin(E / 2) # atan2 in python needs the arguments as (y,x) # rather than (x,y) ...? nu = 2 * math.atan2(nuarg2, nuarg1) rvec.append(r) # append r for each day xyvec.append((x, y)) # append (x,y) coords for each day nuvec.append(nu) # append True anomaly for each day # build date in ISO format date = '{} {}'.format(spice.et2utc(et, 'ISOC', 0).split('T')[0], spice.et2utc(et, 'ISOC', 0).split('T')[1]) dates.append(date) # append date for each day incvec.append(elts[2]) # append inc. for each day (rads) # print(date, nu * spice.dpr(), x, y, z, r, elts[0]) # for this planet find the argument of pericenter (argp): # find the index of the min. r value for calculated range. argpi = rvec.index(min(rvec)) # calculate argp x and y values and argp using atan2 argpxy = (xyvec[argpi][0], xyvec[argpi][1] * math.cos(incvec[argpi])) argp = math.degrees(math.atan2(argpxy[1], argpxy[0])) argpxys.append(argpxy) # append argp (x,y) coords. argps.append(argp) # append argp xyvecs.append(xyvec) # append (x,y) coords. vector nuvecs.append(nuvec) # append true anomaly vector spice.kclear() return days, dates, xyvecs, argps, argpxys, nuvecs
Dx = Lx / (nPixelsX - 1) else: Dx = Lx if nPixelsY > 1: Dy = Ly / (nPixelsY - 1) else: Dy = Ly if iPointingCase == spice_: ################################################# # get rosetta coordinates from spice ################################################# spice.furnsh(StringKernelMetaFile) Et = spice.str2et(StringUtcStartTime) #R = spice.pxform("ROS_SPACECRAFT", "67P/C-G_CSO", Et) # create rotation matrix R to go from instrument reference frame to CSO if ((iDim == 2) or (iDim == 1)): rRosetta, lightTime = spice.spkpos("ROSETTA", Et, "67P/C-G_CSO", "NONE", "CHURYUMOV-GERASIMENKO") # s/c coordinates in CSO frame of reference R = spice.pxform(InstrumentFrame, "67P/C-G_CSO", Et) # create rotation matrix R to go from instrument reference frame to CSO elif iDim == 3: print "iDim = 3" rRosetta, lightTime = spice.spkpos("ROSETTA", Et, "67P/C-G_CK", "NONE", "CHURYUMOV-GERASIMENKO") # s/c coordinates in CSO frame of reference R = spice.pxform(InstrumentFrame, "67P/C-G_CK", Et) # do 3d stuff from here? rSun, lt = spice.spkpos("SUN", Et, "67P/C-G_CK", "NONE", "CHURYUMOV-GERASIMENKO") rSun = np.array(rSun) rSun = rSun / np.sqrt((rSun**2).sum()) # quick and dirty fix --> andre needs to define instrument object for all instruments! try: if instrument.name == 'sun':