from probeinterface.plotting import plot_probe plot_probe(probe) ############################################################################## # Using the :code:`toolkit`, you can perform preprocessing on the recordings. # Each pre-processing function also returns a :code:`RecordingExtractor`, # which makes it easy to build pipelines. Here, we filter the recording and # apply common median reference (CMR). # All theses preprocessing steps are "lazy". The computation is done on demand when we call # `recording.get_traces(...)` or when we save the object to disk. recording_cmr = recording recording_f = st.bandpass_filter(recording, freq_min=300, freq_max=6000) print(recording_f) recording_cmr = st.common_reference(recording_f, reference='global', operator='median') print(recording_cmr) # this computes and saves the recording after applying the preprocessing chain recording_preprocessed = recording_cmr.save(format='binary') print(recording_preprocessed) ############################################################################## # Now you are ready to spike sort using the :code:`sorters` module! # Let's first check which sorters are implemented and which are installed print('Available sorters', ss.available_sorters()) print('Installed sorters', ss.installed_sorters()) ############################################################################## # The :code:`ss.installed_sorters()` will list the sorters installed in the machine.
############################################################################## # Change reference # ------------------- # # In many cases, before spike sorting, it is wise to re-reference the # signals to reduce the common-mode noise from the recordings. # # To re-reference in :code:`spiketoolkit` you can use the :code:`common_reference` # function. Both common average reference (CAR) and common median # reference (CMR) can be applied. Moreover, the average/median can be # computed on different groups. Single channels can also be used as # reference. recording_car = st.common_reference(recording, reference='global', operator='average') recording_cmr = st.common_reference(recording, reference='global', operator='median') recording_single = st.common_reference(recording, reference='single', ref_channels=[1]) recording_single_groups = st.common_reference(recording, reference='single', groups=[[0, 1], [2, 3]], ref_channels=[0, 2]) trace0_car = recording_car.get_traces(segment_index=0)[:, 0] trace0_cmr = recording_cmr.get_traces(segment_index=0)[:, 0] trace0_single = recording_single.get_traces(segment_index=0)[:, 0]