Exemple #1
0
def main(argv=None):
    parser = get_parser()
    arguments = parser.parse_args(argv)
    verbose = arguments.v
    set_global_loglevel(verbose=verbose)

    # Initialization
    param = Param()
    start_time = time.time()

    fname_anat = arguments.i
    fname_centerline = arguments.s
    param.algo_fitting = arguments.algo_fitting

    if arguments.smooth is not None:
        sigmas = arguments.smooth
    remove_temp_files = arguments.r
    if arguments.o is not None:
        fname_out = arguments.o
    else:
        fname_out = extract_fname(fname_anat)[1] + '_smooth.nii'

    # Display arguments
    printv('\nCheck input arguments...')
    printv('  Volume to smooth .................. ' + fname_anat)
    printv('  Centerline ........................ ' + fname_centerline)
    printv('  Sigma (mm) ........................ ' + str(sigmas))
    printv('  Verbose ........................... ' + str(verbose))

    # Check that input is 3D:
    nx, ny, nz, nt, px, py, pz, pt = Image(fname_anat).dim
    dim = 4  # by default, will be adjusted later
    if nt == 1:
        dim = 3
    if nz == 1:
        dim = 2
    if dim == 4:
        printv(
            'WARNING: the input image is 4D, please split your image to 3D before smoothing spinalcord using :\n'
            'sct_image -i ' + fname_anat + ' -split t -o ' + fname_anat,
            verbose, 'warning')
        printv('4D images not supported, aborting ...', verbose, 'error')

    # Extract path/file/extension
    path_anat, file_anat, ext_anat = extract_fname(fname_anat)
    path_centerline, file_centerline, ext_centerline = extract_fname(
        fname_centerline)

    path_tmp = tmp_create(basename="smooth_spinalcord")

    # Copying input data to tmp folder
    printv('\nCopying input data to tmp folder and convert to nii...', verbose)
    copy(fname_anat, os.path.join(path_tmp, "anat" + ext_anat))
    copy(fname_centerline, os.path.join(path_tmp,
                                        "centerline" + ext_centerline))

    # go to tmp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    # convert to nii format
    im_anat = convert(Image('anat' + ext_anat))
    im_anat.save('anat.nii', mutable=True, verbose=verbose)
    im_centerline = convert(Image('centerline' + ext_centerline))
    im_centerline.save('centerline.nii', mutable=True, verbose=verbose)

    # Change orientation of the input image into RPI
    printv('\nOrient input volume to RPI orientation...')

    img_anat_rpi = Image("anat.nii").change_orientation("RPI")
    fname_anat_rpi = add_suffix(img_anat_rpi.absolutepath, "_rpi")
    img_anat_rpi.save(path=fname_anat_rpi, mutable=True)

    # Change orientation of the input image into RPI
    printv('\nOrient centerline to RPI orientation...')

    img_centerline_rpi = Image("centerline.nii").change_orientation("RPI")
    fname_centerline_rpi = add_suffix(img_centerline_rpi.absolutepath, "_rpi")
    img_centerline_rpi.save(path=fname_centerline_rpi, mutable=True)

    # Straighten the spinal cord
    # straighten segmentation
    printv('\nStraighten the spinal cord using centerline/segmentation...',
           verbose)
    cache_sig = cache_signature(
        input_files=[fname_anat_rpi, fname_centerline_rpi],
        input_params={"x": "spline"})
    cachefile = os.path.join(curdir, "straightening.cache")
    if cache_valid(cachefile, cache_sig) and os.path.isfile(
            os.path.join(
                curdir, 'warp_curve2straight.nii.gz')) and os.path.isfile(
                    os.path.join(
                        curdir,
                        'warp_straight2curve.nii.gz')) and os.path.isfile(
                            os.path.join(curdir, 'straight_ref.nii.gz')):
        # if they exist, copy them into current folder
        printv('Reusing existing warping field which seems to be valid',
               verbose, 'warning')
        copy(os.path.join(curdir, 'warp_curve2straight.nii.gz'),
             'warp_curve2straight.nii.gz')
        copy(os.path.join(curdir, 'warp_straight2curve.nii.gz'),
             'warp_straight2curve.nii.gz')
        copy(os.path.join(curdir, 'straight_ref.nii.gz'),
             'straight_ref.nii.gz')
        # apply straightening
        run_proc([
            'sct_apply_transfo', '-i', fname_anat_rpi, '-w',
            'warp_curve2straight.nii.gz', '-d', 'straight_ref.nii.gz', '-o',
            'anat_rpi_straight.nii', '-x', 'spline'
        ], verbose)
    else:
        run_proc([
            'sct_straighten_spinalcord', '-i', fname_anat_rpi, '-o',
            'anat_rpi_straight.nii', '-s', fname_centerline_rpi, '-x',
            'spline', '-param', 'algo_fitting=' + param.algo_fitting
        ], verbose)
        cache_save(cachefile, cache_sig)
        # move warping fields locally (to use caching next time)
        copy('warp_curve2straight.nii.gz',
             os.path.join(curdir, 'warp_curve2straight.nii.gz'))
        copy('warp_straight2curve.nii.gz',
             os.path.join(curdir, 'warp_straight2curve.nii.gz'))

    # Smooth the straightened image along z
    printv('\nSmooth the straightened image...')

    img = Image("anat_rpi_straight.nii")
    out = img.copy()

    if len(sigmas) == 1:
        sigmas = [sigmas[0] for i in range(len(img.data.shape))]
    elif len(sigmas) != len(img.data.shape):
        raise ValueError(
            "-smooth need the same number of inputs as the number of image dimension OR only one input"
        )

    sigmas = [sigmas[i] / img.dim[i + 4] for i in range(3)]
    out.data = smooth(out.data, sigmas)
    out.save(path="anat_rpi_straight_smooth.nii")

    # Apply the reversed warping field to get back the curved spinal cord
    printv(
        '\nApply the reversed warping field to get back the curved spinal cord...'
    )
    run_proc([
        'sct_apply_transfo', '-i', 'anat_rpi_straight_smooth.nii', '-o',
        'anat_rpi_straight_smooth_curved.nii', '-d', 'anat.nii', '-w',
        'warp_straight2curve.nii.gz', '-x', 'spline'
    ], verbose)

    # replace zeroed voxels by original image (issue #937)
    printv('\nReplace zeroed voxels by original image...', verbose)
    nii_smooth = Image('anat_rpi_straight_smooth_curved.nii')
    data_smooth = nii_smooth.data
    data_input = Image('anat.nii').data
    indzero = np.where(data_smooth == 0)
    data_smooth[indzero] = data_input[indzero]
    nii_smooth.data = data_smooth
    nii_smooth.save('anat_rpi_straight_smooth_curved_nonzero.nii')

    # come back
    os.chdir(curdir)

    # Generate output file
    printv('\nGenerate output file...')
    generate_output_file(
        os.path.join(path_tmp, "anat_rpi_straight_smooth_curved_nonzero.nii"),
        fname_out)

    # Remove temporary files
    if remove_temp_files == 1:
        printv('\nRemove temporary files...')
        rmtree(path_tmp)

    # Display elapsed time
    elapsed_time = time.time() - start_time
    printv('\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) +
           's\n')

    display_viewer_syntax([fname_anat, fname_out], verbose=verbose)
def main(argv=None):
    parser = get_parser()
    arguments = parser.parse_args(argv if argv else ['--help'])
    verbose = arguments.v
    set_global_loglevel(verbose=verbose)

    # initializations
    initz = ''
    initcenter = ''
    fname_initlabel = ''
    file_labelz = 'labelz.nii.gz'
    param = Param()

    fname_in = os.path.abspath(arguments.i)
    fname_seg = os.path.abspath(arguments.s)
    contrast = arguments.c
    path_template = os.path.abspath(arguments.t)
    scale_dist = arguments.scale_dist
    path_output = arguments.ofolder
    param.path_qc = arguments.qc
    if arguments.discfile is not None:
        fname_disc = os.path.abspath(arguments.discfile)
    else:
        fname_disc = None
    if arguments.initz is not None:
        initz = arguments.initz
        if len(initz) != 2:
            raise ValueError(
                '--initz takes two arguments: position in superior-inferior direction, label value'
            )
    if arguments.initcenter is not None:
        initcenter = arguments.initcenter
    # if user provided text file, parse and overwrite arguments
    if arguments.initfile is not None:
        file = open(arguments.initfile, 'r')
        initfile = ' ' + file.read().replace('\n', '')
        arg_initfile = initfile.split(' ')
        for idx_arg, arg in enumerate(arg_initfile):
            if arg == '-initz':
                initz = [int(x) for x in arg_initfile[idx_arg + 1].split(',')]
                if len(initz) != 2:
                    raise ValueError(
                        '--initz takes two arguments: position in superior-inferior direction, label value'
                    )
            if arg == '-initcenter':
                initcenter = int(arg_initfile[idx_arg + 1])
    if arguments.initlabel is not None:
        # get absolute path of label
        fname_initlabel = os.path.abspath(arguments.initlabel)
    if arguments.param is not None:
        param.update(arguments.param[0])
    remove_temp_files = arguments.r
    clean_labels = arguments.clean_labels
    laplacian = arguments.laplacian

    path_tmp = tmp_create(basename="label_vertebrae")

    # Copying input data to tmp folder
    printv('\nCopying input data to tmp folder...', verbose)
    Image(fname_in).save(os.path.join(path_tmp, "data.nii"))
    Image(fname_seg).save(os.path.join(path_tmp, "segmentation.nii"))

    # Go go temp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    # Straighten spinal cord
    printv('\nStraighten spinal cord...', verbose)
    # check if warp_curve2straight and warp_straight2curve already exist (i.e. no need to do it another time)
    cache_sig = cache_signature(input_files=[fname_in, fname_seg], )
    cachefile = os.path.join(curdir, "straightening.cache")
    if cache_valid(cachefile, cache_sig) and os.path.isfile(
            os.path.join(
                curdir, "warp_curve2straight.nii.gz")) and os.path.isfile(
                    os.path.join(
                        curdir,
                        "warp_straight2curve.nii.gz")) and os.path.isfile(
                            os.path.join(curdir, "straight_ref.nii.gz")):
        # if they exist, copy them into current folder
        printv('Reusing existing warping field which seems to be valid',
               verbose, 'warning')
        copy(os.path.join(curdir, "warp_curve2straight.nii.gz"),
             'warp_curve2straight.nii.gz')
        copy(os.path.join(curdir, "warp_straight2curve.nii.gz"),
             'warp_straight2curve.nii.gz')
        copy(os.path.join(curdir, "straight_ref.nii.gz"),
             'straight_ref.nii.gz')
        # apply straightening
        s, o = run_proc([
            'sct_apply_transfo', '-i', 'data.nii', '-w',
            'warp_curve2straight.nii.gz', '-d', 'straight_ref.nii.gz', '-o',
            'data_straight.nii'
        ])
    else:
        sct_straighten_spinalcord.main(argv=[
            '-i',
            'data.nii',
            '-s',
            'segmentation.nii',
            '-r',
            str(remove_temp_files),
            '-v',
            str(verbose),
        ])
        cache_save(cachefile, cache_sig)

    # resample to 0.5mm isotropic to match template resolution
    printv('\nResample to 0.5mm isotropic...', verbose)
    s, o = run_proc([
        'sct_resample', '-i', 'data_straight.nii', '-mm', '0.5x0.5x0.5', '-x',
        'linear', '-o', 'data_straightr.nii'
    ],
                    verbose=verbose)

    # Apply straightening to segmentation
    # N.B. Output is RPI
    printv('\nApply straightening to segmentation...', verbose)
    run_proc(
        'isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' %
        ('segmentation.nii', 'data_straightr.nii',
         'warp_curve2straight.nii.gz', 'segmentation_straight.nii', 'Linear'),
        verbose=verbose,
        is_sct_binary=True,
    )
    # Threshold segmentation at 0.5
    run_proc([
        'sct_maths', '-i', 'segmentation_straight.nii', '-thr', '0.5', '-o',
        'segmentation_straight.nii'
    ], verbose)

    # If disc label file is provided, label vertebrae using that file instead of automatically
    if fname_disc:
        # Apply straightening to disc-label
        printv('\nApply straightening to disc labels...', verbose)
        run_proc(
            'sct_apply_transfo -i %s -d %s -w %s -o %s -x %s' %
            (fname_disc, 'data_straightr.nii', 'warp_curve2straight.nii.gz',
             'labeldisc_straight.nii.gz', 'label'),
            verbose=verbose)
        label_vert('segmentation_straight.nii',
                   'labeldisc_straight.nii.gz',
                   verbose=1)

    else:
        # create label to identify disc
        printv('\nCreate label to identify disc...', verbose)
        fname_labelz = os.path.join(path_tmp, file_labelz)
        if initz or initcenter:
            if initcenter:
                # find z centered in FOV
                nii = Image('segmentation.nii').change_orientation("RPI")
                nx, ny, nz, nt, px, py, pz, pt = nii.dim  # Get dimensions
                z_center = int(np.round(nz / 2))  # get z_center
                initz = [z_center, initcenter]

            im_label = create_labels_along_segmentation(
                Image('segmentation.nii'), [(initz[0], initz[1])])
            im_label.data = dilate(im_label.data, 3, 'ball')
            im_label.save(fname_labelz)

        elif fname_initlabel:
            Image(fname_initlabel).save(fname_labelz)

        else:
            # automatically finds C2-C3 disc
            im_data = Image('data.nii')
            im_seg = Image('segmentation.nii')
            if not remove_temp_files:  # because verbose is here also used for keeping temp files
                verbose_detect_c2c3 = 2
            else:
                verbose_detect_c2c3 = 0
            im_label_c2c3 = detect_c2c3(im_data,
                                        im_seg,
                                        contrast,
                                        verbose=verbose_detect_c2c3)
            ind_label = np.where(im_label_c2c3.data)
            if not np.size(ind_label) == 0:
                im_label_c2c3.data[ind_label] = 3
            else:
                printv(
                    'Automatic C2-C3 detection failed. Please provide manual label with sct_label_utils',
                    1, 'error')
                sys.exit()
            im_label_c2c3.save(fname_labelz)

        # dilate label so it is not lost when applying warping
        dilate(Image(fname_labelz), 3, 'ball').save(fname_labelz)

        # Apply straightening to z-label
        printv('\nAnd apply straightening to label...', verbose)
        run_proc(
            'isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' %
            (file_labelz, 'data_straightr.nii', 'warp_curve2straight.nii.gz',
             'labelz_straight.nii.gz', 'NearestNeighbor'),
            verbose=verbose,
            is_sct_binary=True,
        )
        # get z value and disk value to initialize labeling
        printv('\nGet z and disc values from straight label...', verbose)
        init_disc = get_z_and_disc_values_from_label('labelz_straight.nii.gz')
        printv('.. ' + str(init_disc), verbose)

        # apply laplacian filtering
        if laplacian:
            printv('\nApply Laplacian filter...', verbose)
            run_proc([
                'sct_maths', '-i', 'data_straightr.nii', '-laplacian', '1',
                '-o', 'data_straightr.nii'
            ], verbose)

        # detect vertebral levels on straight spinal cord
        init_disc[1] = init_disc[1] - 1
        vertebral_detection('data_straightr.nii',
                            'segmentation_straight.nii',
                            contrast,
                            param,
                            init_disc=init_disc,
                            verbose=verbose,
                            path_template=path_template,
                            path_output=path_output,
                            scale_dist=scale_dist)

    # un-straighten labeled spinal cord
    printv('\nUn-straighten labeling...', verbose)
    run_proc(
        'isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' %
        ('segmentation_straight_labeled.nii', 'segmentation.nii',
         'warp_straight2curve.nii.gz', 'segmentation_labeled.nii',
         'NearestNeighbor'),
        verbose=verbose,
        is_sct_binary=True,
    )

    if clean_labels:
        # Clean labeled segmentation
        printv(
            '\nClean labeled segmentation (correct interpolation errors)...',
            verbose)
        clean_labeled_segmentation('segmentation_labeled.nii',
                                   'segmentation.nii',
                                   'segmentation_labeled.nii')

    # label discs
    printv('\nLabel discs...', verbose)
    printv('\nUn-straighten labeled discs...', verbose)
    run_proc(
        'sct_apply_transfo -i %s -d %s -w %s -o %s -x %s' %
        ('segmentation_straight_labeled_disc.nii', 'segmentation.nii',
         'warp_straight2curve.nii.gz', 'segmentation_labeled_disc.nii',
         'label'),
        verbose=verbose,
        is_sct_binary=True,
    )

    # come back
    os.chdir(curdir)

    # Generate output files
    path_seg, file_seg, ext_seg = extract_fname(fname_seg)
    fname_seg_labeled = os.path.join(path_output,
                                     file_seg + '_labeled' + ext_seg)
    printv('\nGenerate output files...', verbose)
    generate_output_file(os.path.join(path_tmp, "segmentation_labeled.nii"),
                         fname_seg_labeled)
    generate_output_file(
        os.path.join(path_tmp, "segmentation_labeled_disc.nii"),
        os.path.join(path_output, file_seg + '_labeled_discs' + ext_seg))
    # copy straightening files in case subsequent SCT functions need them
    generate_output_file(os.path.join(path_tmp, "warp_curve2straight.nii.gz"),
                         os.path.join(path_output,
                                      "warp_curve2straight.nii.gz"),
                         verbose=verbose)
    generate_output_file(os.path.join(path_tmp, "warp_straight2curve.nii.gz"),
                         os.path.join(path_output,
                                      "warp_straight2curve.nii.gz"),
                         verbose=verbose)
    generate_output_file(os.path.join(path_tmp, "straight_ref.nii.gz"),
                         os.path.join(path_output, "straight_ref.nii.gz"),
                         verbose=verbose)

    # Remove temporary files
    if remove_temp_files == 1:
        printv('\nRemove temporary files...', verbose)
        rmtree(path_tmp)

    # Generate QC report
    if param.path_qc is not None:
        path_qc = os.path.abspath(arguments.qc)
        qc_dataset = arguments.qc_dataset
        qc_subject = arguments.qc_subject
        labeled_seg_file = os.path.join(path_output,
                                        file_seg + '_labeled' + ext_seg)
        generate_qc(fname_in,
                    fname_seg=labeled_seg_file,
                    args=argv,
                    path_qc=os.path.abspath(path_qc),
                    dataset=qc_dataset,
                    subject=qc_subject,
                    process='sct_label_vertebrae')

    display_viewer_syntax([fname_in, fname_seg_labeled],
                          colormaps=['', 'subcortical'],
                          opacities=['1', '0.5'])
Exemple #3
0
def main(argv=None):
    parser = get_parser()
    arguments = parser.parse_args(argv)
    verbose = arguments.v
    set_loglevel(verbose=verbose)

    fname_in = os.path.abspath(arguments.i)
    fname_seg = os.path.abspath(arguments.s)
    contrast = arguments.c
    path_template = os.path.abspath(arguments.t)
    scale_dist = arguments.scale_dist
    path_output = os.path.abspath(arguments.ofolder)
    fname_disc = arguments.discfile
    if fname_disc is not None:
        fname_disc = os.path.abspath(fname_disc)
    initz = arguments.initz
    initcenter = arguments.initcenter
    fname_initlabel = arguments.initlabel
    if fname_initlabel is not None:
        fname_initlabel = os.path.abspath(fname_initlabel)
    remove_temp_files = arguments.r
    clean_labels = arguments.clean_labels

    path_tmp = tmp_create(basename="label_vertebrae")

    # Copying input data to tmp folder
    printv('\nCopying input data to tmp folder...', verbose)
    Image(fname_in).save(os.path.join(path_tmp, "data.nii"))
    Image(fname_seg).save(os.path.join(path_tmp, "segmentation.nii"))

    # Go go temp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    # Straighten spinal cord
    printv('\nStraighten spinal cord...', verbose)
    # check if warp_curve2straight and warp_straight2curve already exist (i.e. no need to do it another time)
    cache_sig = cache_signature(input_files=[fname_in, fname_seg], )
    fname_cache = "straightening.cache"
    if (cache_valid(os.path.join(curdir, fname_cache), cache_sig)
            and os.path.isfile(
                os.path.join(curdir, "warp_curve2straight.nii.gz"))
            and os.path.isfile(
                os.path.join(curdir, "warp_straight2curve.nii.gz"))
            and os.path.isfile(os.path.join(curdir, "straight_ref.nii.gz"))):
        # if they exist, copy them into current folder
        printv('Reusing existing warping field which seems to be valid',
               verbose, 'warning')
        copy(os.path.join(curdir, "warp_curve2straight.nii.gz"),
             'warp_curve2straight.nii.gz')
        copy(os.path.join(curdir, "warp_straight2curve.nii.gz"),
             'warp_straight2curve.nii.gz')
        copy(os.path.join(curdir, "straight_ref.nii.gz"),
             'straight_ref.nii.gz')
        # apply straightening
        s, o = run_proc([
            'sct_apply_transfo', '-i', 'data.nii', '-w',
            'warp_curve2straight.nii.gz', '-d', 'straight_ref.nii.gz', '-o',
            'data_straight.nii'
        ])
    else:
        sct_straighten_spinalcord.main(argv=[
            '-i',
            'data.nii',
            '-s',
            'segmentation.nii',
            '-r',
            str(remove_temp_files),
            '-v',
            '0',
        ])
        cache_save(os.path.join(path_output, fname_cache), cache_sig)

    # resample to 0.5mm isotropic to match template resolution
    printv('\nResample to 0.5mm isotropic...', verbose)
    s, o = run_proc([
        'sct_resample', '-i', 'data_straight.nii', '-mm', '0.5x0.5x0.5', '-x',
        'linear', '-o', 'data_straightr.nii'
    ],
                    verbose=verbose)

    # Apply straightening to segmentation
    # N.B. Output is RPI
    printv('\nApply straightening to segmentation...', verbose)
    sct_apply_transfo.main([
        '-i', 'segmentation.nii', '-d', 'data_straightr.nii', '-w',
        'warp_curve2straight.nii.gz', '-o', 'segmentation_straight.nii', '-x',
        'linear', '-v', '0'
    ])

    # Threshold segmentation at 0.5
    img = Image('segmentation_straight.nii')
    img.data = threshold(img.data, 0.5)
    img.save()

    # If disc label file is provided, label vertebrae using that file instead of automatically
    if fname_disc:
        # Apply straightening to disc-label
        printv('\nApply straightening to disc labels...', verbose)
        run_proc(
            'sct_apply_transfo -i %s -d %s -w %s -o %s -x %s' %
            (fname_disc, 'data_straightr.nii', 'warp_curve2straight.nii.gz',
             'labeldisc_straight.nii.gz', 'label'),
            verbose=verbose)
        label_vert('segmentation_straight.nii',
                   'labeldisc_straight.nii.gz',
                   verbose=1)

    else:
        printv('\nCreate label to identify disc...', verbose)
        fname_labelz = os.path.join(path_tmp, 'labelz.nii.gz')
        if initcenter is not None:
            # find z centered in FOV
            nii = Image('segmentation.nii').change_orientation("RPI")
            nx, ny, nz, nt, px, py, pz, pt = nii.dim
            z_center = round(nz / 2)
            initz = [z_center, initcenter]
        if initz is not None:
            im_label = create_labels_along_segmentation(
                Image('segmentation.nii'), [tuple(initz)])
            im_label.save(fname_labelz)
        elif fname_initlabel is not None:
            Image(fname_initlabel).save(fname_labelz)
        else:
            # automatically finds C2-C3 disc
            im_data = Image('data.nii')
            im_seg = Image('segmentation.nii')
            # because verbose is also used for keeping temp files
            verbose_detect_c2c3 = 0 if remove_temp_files else 2
            im_label_c2c3 = detect_c2c3(im_data,
                                        im_seg,
                                        contrast,
                                        verbose=verbose_detect_c2c3)
            ind_label = np.where(im_label_c2c3.data)
            if np.size(ind_label) == 0:
                printv(
                    'Automatic C2-C3 detection failed. Please provide manual label with sct_label_utils',
                    1, 'error')
                sys.exit(1)
            im_label_c2c3.data[ind_label] = 3
            im_label_c2c3.save(fname_labelz)

        # dilate label so it is not lost when applying warping
        dilate(Image(fname_labelz), 3, 'ball').save(fname_labelz)

        # Apply straightening to z-label
        printv('\nAnd apply straightening to label...', verbose)
        sct_apply_transfo.main([
            '-i', 'labelz.nii.gz', '-d', 'data_straightr.nii', '-w',
            'warp_curve2straight.nii.gz', '-o', 'labelz_straight.nii.gz', '-x',
            'nn', '-v', '0'
        ])
        # get z value and disk value to initialize labeling
        printv('\nGet z and disc values from straight label...', verbose)
        init_disc = get_z_and_disc_values_from_label('labelz_straight.nii.gz')
        printv('.. ' + str(init_disc), verbose)

        # apply laplacian filtering
        if arguments.laplacian:
            printv('\nApply Laplacian filter...', verbose)
            img = Image("data_straightr.nii")

            # apply std dev to each axis of the image
            sigmas = [1 for i in range(len(img.data.shape))]

            # adjust sigma based on voxel size
            sigmas = [sigmas[i] / img.dim[i + 4] for i in range(3)]

            # smooth data
            img.data = laplacian(img.data, sigmas)
            img.save()

        # detect vertebral levels on straight spinal cord
        init_disc[1] = init_disc[1] - 1
        vertebral_detection('data_straightr.nii',
                            'segmentation_straight.nii',
                            contrast,
                            arguments.param,
                            init_disc=init_disc,
                            verbose=verbose,
                            path_template=path_template,
                            path_output=path_output,
                            scale_dist=scale_dist)

    # un-straighten labeled spinal cord
    printv('\nUn-straighten labeling...', verbose)
    sct_apply_transfo.main([
        '-i', 'segmentation_straight_labeled.nii', '-d', 'segmentation.nii',
        '-w', 'warp_straight2curve.nii.gz', '-o', 'segmentation_labeled.nii',
        '-x', 'nn', '-v', '0'
    ])

    if clean_labels >= 1:
        printv('\nCleaning labeled segmentation:', verbose)
        im_labeled_seg = Image('segmentation_labeled.nii')
        im_seg = Image('segmentation.nii')
        if clean_labels >= 2:
            printv('  filling in missing label voxels ...', verbose)
            expand_labels(im_labeled_seg)
        printv('  removing labeled voxels outside segmentation...', verbose)
        crop_labels(im_labeled_seg, im_seg)
        printv('Done cleaning.', verbose)
        im_labeled_seg.save()

    # label discs
    printv('\nLabel discs...', verbose)
    printv('\nUn-straighten labeled discs...', verbose)
    run_proc(
        'sct_apply_transfo -i %s -d %s -w %s -o %s -x %s' %
        ('segmentation_straight_labeled_disc.nii', 'segmentation.nii',
         'warp_straight2curve.nii.gz', 'segmentation_labeled_disc.nii',
         'label'),
        verbose=verbose,
        is_sct_binary=True,
    )

    # come back
    os.chdir(curdir)

    # Generate output files
    path_seg, file_seg, ext_seg = extract_fname(fname_seg)
    fname_seg_labeled = os.path.join(path_output,
                                     file_seg + '_labeled' + ext_seg)
    printv('\nGenerate output files...', verbose)
    generate_output_file(os.path.join(path_tmp, "segmentation_labeled.nii"),
                         fname_seg_labeled)
    generate_output_file(
        os.path.join(path_tmp, "segmentation_labeled_disc.nii"),
        os.path.join(path_output, file_seg + '_labeled_discs' + ext_seg))
    # copy straightening files in case subsequent SCT functions need them
    generate_output_file(os.path.join(path_tmp, "warp_curve2straight.nii.gz"),
                         os.path.join(path_output,
                                      "warp_curve2straight.nii.gz"),
                         verbose=verbose)
    generate_output_file(os.path.join(path_tmp, "warp_straight2curve.nii.gz"),
                         os.path.join(path_output,
                                      "warp_straight2curve.nii.gz"),
                         verbose=verbose)
    generate_output_file(os.path.join(path_tmp, "straight_ref.nii.gz"),
                         os.path.join(path_output, "straight_ref.nii.gz"),
                         verbose=verbose)

    # Remove temporary files
    if remove_temp_files == 1:
        printv('\nRemove temporary files...', verbose)
        rmtree(path_tmp)

    # Generate QC report
    if arguments.qc is not None:
        path_qc = os.path.abspath(arguments.qc)
        qc_dataset = arguments.qc_dataset
        qc_subject = arguments.qc_subject
        labeled_seg_file = os.path.join(path_output,
                                        file_seg + '_labeled' + ext_seg)
        generate_qc(fname_in,
                    fname_seg=labeled_seg_file,
                    args=argv,
                    path_qc=os.path.abspath(path_qc),
                    dataset=qc_dataset,
                    subject=qc_subject,
                    process='sct_label_vertebrae')

    display_viewer_syntax([fname_in, fname_seg_labeled],
                          colormaps=['', 'subcortical'],
                          opacities=['1', '0.5'])