def test_basic_stack(self): model = MockModel(SentenceModel, default_args()) train = False X, transitions = get_batch() class Projection(nn.Module): def forward(self, x): return x[:, :default_args()['model_dim']] class Reduce(nn.Module): def forward(self, lefts, rights, tracking): batch_size = len(lefts) return torch.chunk( torch.cat(lefts, 0) - torch.cat(rights, 0), batch_size, 0) model.embed.projection = Projection() model.spinn.reduce = Reduce() model(X, transitions) outputs = model.spinn_outp[0] assert outputs[0][0].data[0] == (3 - (1 - (2 - 1))) assert outputs[1][0].data[0] == ((3 - 2) - (4 - 5))
def test_soft_eval(self): args = default_args() args['test_temperature_multiplier'] = 0.0000001 model = MockModel(Pyramid, args) X, transitions = get_batch() class Projection(nn.Module): def forward(self, x): return x[:, :default_args()['model_dim']] class mlp(nn.Module): def forward(self, x): return x def selection_fn(selection_input): # Compose in random order return Variable(torch.rand(selection_input.data.size()[0], 1)) class Reduce(nn.Module): def forward(self, lefts, rights): return lefts + rights model.encode = Projection() model.composition_fn = Reduce() model.selection_fn = selection_fn model.mlp = mlp() model.eval() outputs = model(X, transitions) assert outputs[0][0].data[0] == (3 + 1 + 2 + 1) assert outputs[1][0].data[0] == (3 + 2 + 4 + 5)
def test_single_cbow(self): model = MockModel(SentenceModel, default_args()) X, transitions = get_batch() outputs = model(X, transitions) assert outputs.size() == (2, 3)