def trpo(env_fn, actor_critic=core.mlp_actor_critic, ac_kwargs=dict(), seed=0, steps_per_epoch=4000, epochs=50, gamma=0.99, delta=0.01, vf_lr=1e-3, train_v_iters=80, damping_coeff=0.1, cg_iters=10, backtrack_iters=10, backtrack_coeff=0.8, lam=0.97, max_ep_len=1000, logger_kwargs=dict(), save_freq=10, algo='trpo'): """ Args: env_fn : A function which creates a copy of the environment. The environment must satisfy the OpenAI Gym API. actor_critic: A function which takes in placeholder symbols for state, ``x_ph``, and action, ``a_ph``, and returns the main outputs from the agent's Tensorflow computation graph: ============ ================ ======================================== Symbol Shape Description ============ ================ ======================================== ``pi`` (batch, act_dim) | Samples actions from policy given | states. ``logp`` (batch,) | Gives log probability, according to | the policy, of taking actions ``a_ph`` | in states ``x_ph``. ``logp_pi`` (batch,) | Gives log probability, according to | the policy, of the action sampled by | ``pi``. ``info`` N/A | A dict of any intermediate quantities | (from calculating the policy or log | probabilities) which are needed for | analytically computing KL divergence. | (eg sufficient statistics of the | distributions) ``info_phs`` N/A | A dict of placeholders for old values | of the entries in ``info``. ``d_kl`` () | A symbol for computing the mean KL | divergence between the current policy | (``pi``) and the old policy (as | specified by the inputs to | ``info_phs``) over the batch of | states given in ``x_ph``. ``v`` (batch,) | Gives the value estimate for states | in ``x_ph``. (Critical: make sure | to flatten this!) ============ ================ ======================================== ac_kwargs (dict): Any kwargs appropriate for the actor_critic function you provided to TRPO. seed (int): Seed for random number generators. steps_per_epoch (int): Number of steps of interaction (state-action pairs) for the agent and the environment in each epoch. epochs (int): Number of epochs of interaction (equivalent to number of policy updates) to perform. gamma (float): Discount factor. (Always between 0 and 1.) delta (float): KL-divergence limit for TRPO / NPG update. (Should be small for stability. Values like 0.01, 0.05.) vf_lr (float): Learning rate for value function optimizer. train_v_iters (int): Number of gradient descent steps to take on value function per epoch. damping_coeff (float): Artifact for numerical stability, should be smallish. Adjusts Hessian-vector product calculation: .. math:: Hv \\rightarrow (\\alpha I + H)v where :math:`\\alpha` is the damping coefficient. Probably don't play with this hyperparameter. cg_iters (int): Number of iterations of conjugate gradient to perform. Increasing this will lead to a more accurate approximation to :math:`H^{-1} g`, and possibly slightly-improved performance, but at the cost of slowing things down. Also probably don't play with this hyperparameter. backtrack_iters (int): Maximum number of steps allowed in the backtracking line search. Since the line search usually doesn't backtrack, and usually only steps back once when it does, this hyperparameter doesn't often matter. backtrack_coeff (float): How far back to step during backtracking line search. (Always between 0 and 1, usually above 0.5.) lam (float): Lambda for GAE-Lambda. (Always between 0 and 1, close to 1.) max_ep_len (int): Maximum length of trajectory / episode / rollout. logger_kwargs (dict): Keyword args for EpochLogger. save_freq (int): How often (in terms of gap between epochs) to save the current policy and value function. algo: Either 'trpo' or 'npg': this code supports both, since they are almost the same. """ logger = EpochLogger(**logger_kwargs) logger.save_config(locals()) seed += 10000 * proc_id() tf.set_random_seed(seed) np.random.seed(seed) env = env_fn() obs_dim = env.observation_space.shape act_dim = env.action_space.shape # Share information about action space with policy architecture ac_kwargs['action_space'] = env.action_space # Inputs to computation graph x_ph, a_ph = core.placeholders_from_spaces(env.observation_space, env.action_space) adv_ph, ret_ph, logp_old_ph = core.placeholders(None, None, None) # Main outputs from computation graph, plus placeholders for old pdist (for KL) pi, logp, logp_pi, info, info_phs, d_kl, v = actor_critic( x_ph, a_ph, **ac_kwargs) # Need all placeholders in *this* order later (to zip with data from buffer) all_phs = [x_ph, a_ph, adv_ph, ret_ph, logp_old_ph ] + core.values_as_sorted_list(info_phs) # Every step, get: action, value, logprob, & info for pdist (for computing kl div) get_action_ops = [pi, v, logp_pi] + core.values_as_sorted_list(info) # Experience buffer local_steps_per_epoch = int(steps_per_epoch / num_procs()) info_shapes = {k: v.shape.as_list()[1:] for k, v in info_phs.items()} buf = GAEBuffer(obs_dim, act_dim, local_steps_per_epoch, info_shapes, gamma, lam) # Count variables var_counts = tuple(core.count_vars(scope) for scope in ['pi', 'v']) logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n' % var_counts) # TRPO losses ratio = tf.exp(logp - logp_old_ph) # pi(a|s) / pi_old(a|s) pi_loss = -tf.reduce_mean(ratio * adv_ph) v_loss = tf.reduce_mean((ret_ph - v)**2) # Optimizer for value function train_vf = MpiAdamOptimizer(learning_rate=vf_lr).minimize(v_loss) # Symbols needed for CG solver pi_params = core.get_vars('pi') gradient = core.flat_grad(pi_loss, pi_params) v_ph, hvp = core.hessian_vector_product(d_kl, pi_params) if damping_coeff > 0: hvp += damping_coeff * v_ph # Symbols for getting and setting params get_pi_params = core.flat_concat(pi_params) set_pi_params = core.assign_params_from_flat(v_ph, pi_params) sess = tf.Session() sess.run(tf.global_variables_initializer()) # Sync params across processes sess.run(sync_all_params()) # Setup model saving logger.setup_tf_saver(sess, inputs={'x': x_ph}, outputs={'pi': pi, 'v': v}) def cg(Ax, b): """ Conjugate gradient algorithm (see https://en.wikipedia.org/wiki/Conjugate_gradient_method) """ x = np.zeros_like(b) r = b.copy( ) # Note: should be 'b - Ax(x)', but for x=0, Ax(x)=0. Change if doing warm start. p = r.copy() r_dot_old = np.dot(r, r) for _ in range(cg_iters): z = Ax(p) alpha = r_dot_old / (np.dot(p, z) + EPS) x += alpha * p r -= alpha * z r_dot_new = np.dot(r, r) p = r + (r_dot_new / r_dot_old) * p r_dot_old = r_dot_new return x def update(): # Prepare hessian func, gradient eval inputs = {k: v for k, v in zip(all_phs, buf.get())} Hx = lambda x: mpi_avg(sess.run(hvp, feed_dict={**inputs, v_ph: x})) g, pi_l_old, v_l_old = sess.run([gradient, pi_loss, v_loss], feed_dict=inputs) g, pi_l_old = mpi_avg(g), mpi_avg(pi_l_old) # Core calculations for TRPO or NPG x = cg(Hx, g) alpha = np.sqrt(2 * delta / (np.dot(x, Hx(x)) + EPS)) old_params = sess.run(get_pi_params) def set_and_eval(step): sess.run(set_pi_params, feed_dict={v_ph: old_params - alpha * x * step}) return mpi_avg(sess.run([d_kl, pi_loss], feed_dict=inputs)) if algo == 'npg': # npg has no backtracking or hard kl constraint enforcement kl, pi_l_new = set_and_eval(step=1.) elif algo == 'trpo': # trpo augments npg with backtracking line search, hard kl for j in range(backtrack_iters): kl, pi_l_new = set_and_eval(step=backtrack_coeff**j) if kl <= delta and pi_l_new <= pi_l_old: logger.log( 'Accepting new params at step %d of line search.' % j) logger.store(BacktrackIters=j) break if j == backtrack_iters - 1: logger.log('Line search failed! Keeping old params.') logger.store(BacktrackIters=j) kl, pi_l_new = set_and_eval(step=0.) # Value function updates for _ in range(train_v_iters): sess.run(train_vf, feed_dict=inputs) v_l_new = sess.run(v_loss, feed_dict=inputs) # Log changes from update logger.store(LossPi=pi_l_old, LossV=v_l_old, KL=kl, DeltaLossPi=(pi_l_new - pi_l_old), DeltaLossV=(v_l_new - v_l_old)) start_time = time.time() o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0 # Main loop: collect experience in env and update/log each epoch for epoch in range(epochs): for t in range(local_steps_per_epoch): agent_outs = sess.run(get_action_ops, feed_dict={x_ph: o.reshape(1, -1)}) a, v_t, logp_t, info_t = agent_outs[0][0], agent_outs[ 1], agent_outs[2], agent_outs[3:] # save and log buf.store(o, a, r, v_t, logp_t, info_t) logger.store(VVals=v_t) o, r, d, _ = env.step(a) ep_ret += r ep_len += 1 terminal = d or (ep_len == max_ep_len) if terminal or (t == local_steps_per_epoch - 1): if not (terminal): print('Warning: trajectory cut off by epoch at %d steps.' % ep_len) # if trajectory didn't reach terminal state, bootstrap value target last_val = r if d else sess.run( v, feed_dict={x_ph: o.reshape(1, -1)}) buf.finish_path(last_val) if terminal: # only save EpRet / EpLen if trajectory finished logger.store(EpRet=ep_ret, EpLen=ep_len) o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0 # Save model if (epoch % save_freq == 0) or (epoch == epochs - 1): logger.save_state({'env': env}, None) # Perform TRPO or NPG update! update() # Log info about epoch logger.log_tabular('Epoch', epoch) logger.log_tabular('EpRet', with_min_and_max=True) logger.log_tabular('EpLen', average_only=True) logger.log_tabular('VVals', with_min_and_max=True) logger.log_tabular('TotalEnvInteracts', (epoch + 1) * steps_per_epoch) logger.log_tabular('LossPi', average_only=True) logger.log_tabular('LossV', average_only=True) logger.log_tabular('DeltaLossPi', average_only=True) logger.log_tabular('DeltaLossV', average_only=True) logger.log_tabular('KL', average_only=True) if algo == 'trpo': logger.log_tabular('BacktrackIters', average_only=True) logger.log_tabular('Time', time.time() - start_time) logger.dump_tabular()
def pg_linesearch(env_fn, actor_critic=core.mlp_actor_critic, ac_kwargs=dict(), seed=0, steps_per_epoch=4000, epochs=50, gamma=0.99, pi_lr=3e-4, backtrack_coeff=0.8, delta=0.01, backtrack_iters=1000, vf_lr=1e-3, train_v_iters=80, lam=0.97, max_ep_len=1000, logger_kwargs=dict(), save_freq=10): """ Args: env_fn : A function which creates a copy of the environment. The environment must satisfy the OpenAI Gym API. actor_critic: A function which takes in placeholder symbols for state, ``x_ph``, and action, ``a_ph``, and returns the main outputs from the agent's Tensorflow computation graph: =========== ================ ====================================== Symbol Shape Description =========== ================ ====================================== ``pi`` (batch, act_dim) | Samples actions from policy given | states. ``logp`` (batch,) | Gives log probability, according to | the policy, of taking actions ``a_ph`` | in states ``x_ph``. ``logp_pi`` (batch,) | Gives log probability, according to | the policy, of the action sampled by | ``pi``. ``v`` (batch,) | Gives the value estimate for states | in ``x_ph``. (Critical: make sure | to flatten this!) =========== ================ ====================================== ac_kwargs (dict): Any kwargs appropriate for the actor_critic function you provided to VPG. seed (int): Seed for random number generators. steps_per_epoch (int): Number of steps of interaction (state-action pairs) for the agent and the environment in each epoch. epochs (int): Number of epochs of interaction (equivalent to number of policy updates) to perform. gamma (float): Discount factor. (Always between 0 and 1.) pi_lr (float): Learning rate for policy optimizer. vf_lr (float): Learning rate for value function optimizer. train_v_iters (int): Number of gradient descent steps to take on value function per epoch. lam (float): Lambda for GAE-Lambda. (Always between 0 and 1, close to 1.) max_ep_len (int): Maximum length of trajectory / episode / rollout. logger_kwargs (dict): Keyword args for EpochLogger. save_freq (int): How often (in terms of gap between epochs) to save the current policy and value function. """ logger = EpochLogger(**logger_kwargs) logger.save_config(locals()) seed += 10000 * proc_id() tf.set_random_seed(seed) np.random.seed(seed) env = env_fn() obs_dim = env.observation_space.shape act_dim = env.action_space.shape # Share information about action space with policy architecture ac_kwargs['action_space'] = env.action_space # Inputs to computation graph x_ph, a_ph = core.placeholders_from_spaces(env.observation_space, env.action_space) adv_ph, ret_ph, logp_old_ph = core.placeholders(None, None, None) # Main outputs from computation graph pi, logp, logp_pi, v = actor_critic(x_ph, a_ph, **ac_kwargs) # Need all placeholders in *this* order later (to zip with data from buffer) all_phs = [x_ph, a_ph, adv_ph, ret_ph, logp_old_ph] # Every step, get: action, value, and logprob get_action_ops = [pi, v, logp_pi] # Experience buffer local_steps_per_epoch = int(steps_per_epoch / num_procs()) buf = PGBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam) # Count variables var_counts = tuple(core.count_vars(scope) for scope in ['pi', 'v']) logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n' % var_counts) # VPG objectives pi_loss = -tf.reduce_mean(logp * adv_ph) v_loss = tf.reduce_mean((ret_ph - v)**2) # Info (useful to watch during learning) approx_kl = tf.reduce_mean( logp_old_ph - logp) # a sample estimate for KL-divergence, easy to compute approx_ent = tf.reduce_mean( -logp) # a sample estimate for entropy, also easy to compute # Optimizers #train_pi = MpiAdamOptimizer(learning_rate=pi_lr).minimize(pi_loss) train_v = MpiAdamOptimizer(learning_rate=vf_lr).minimize(v_loss) # Symbols needed for CG solver pi_params = trpo_core.get_vars('pi') gradient = trpo_core.flat_grad(pi_loss, pi_params) #v_ph, hvp = trpo_core.hessian_vector_product(d_kl, pi_params) v_ph = tf.placeholder(tf.float32, shape=gradient.shape) ##TODO: more analysis on damping Coeff #if damping_coeff > 0: #hvp += damping_coeff * v_ph # Symbols for getting and setting params get_pi_params = trpo_core.flat_concat(pi_params) set_pi_params = trpo_core.assign_params_from_flat(v_ph, pi_params) sess = tf.Session() sess.run(tf.global_variables_initializer()) # Sync params across processes sess.run(sync_all_params()) # Setup model saving logger.setup_tf_saver(sess, inputs={'x': x_ph}, outputs={'pi': pi, 'v': v}) def cg(Ax, b): """ Conjugate gradient algorithm (see https://en.wikipedia.org/wiki/Conjugate_gradient_method) """ ##TODO: Next Step is to try the hessian x = np.zeros_like(b) r = b.copy( ) # Note: should be 'b - Ax(x)', but for x=0, Ax(x)=0. Change if doing warm start. p = r.copy() r_dot_old = np.dot(r, r) cg_iters = 20 for _ in range(cg_iters): z = Ax(p) alpha = r_dot_old / (np.dot(p, z) + EPS) x += alpha * p r -= alpha * z r_dot_new = np.dot(r, r) p = r + (r_dot_new / r_dot_old) * p r_dot_old = r_dot_new return x def update(): inputs = {k: v for k, v in zip(all_phs, buf.get())} #TODO: Next step is to calculate the hessian using safe distance #Hx = lambda x : mpi_avg(sess.run(hvp, feed_dict={**inputs, v_ph: x})) g, pi_l_old, v_l_old, ent = sess.run( [gradient, pi_loss, v_loss, approx_ent], feed_dict=inputs) g, pi_l_old = mpi_avg(g), mpi_avg(pi_l_old) #x = cg(Hx, g) #x = optimize.fmin_cg(pi_l_old, x0, fprime=g) x = g old_params = sess.run(get_pi_params) old_penalty = env.penalty(env.s) alpha = np.sqrt(2 * delta / (np.dot(x, g) + EPS)) # backtracking line search, hard constraint check on env penalty for j in range(backtrack_iters): step = backtrack_coeff**j sess.run(set_pi_params, feed_dict={v_ph: old_params - alpha * x * step}) pi_l_new = sess.run([pi_loss], feed_dict=inputs) penalty = env.penalty(env.s) #print("Old Penalty {}, Penalty {}".format(old_penalty,penalty)) if penalty == 0 or penalty < old_penalty: #if pi_l_new <= pi_l_old: logger.log('Accepting new params at step %d of line search.' % j) logger.store(BacktrackIters=j) logger.store(penalty=penalty, old_penalty=old_penalty) break if j == backtrack_iters - 1: logger.log('Line search failed! Keeping old params.') logger.store(BacktrackIters=j) logger.store(penalty=penalty, old_penalty=old_penalty) # Policy gradient step #sess.run(train_pi, feed_dict=inputs) # Value function learning for _ in range(train_v_iters): sess.run(train_v, feed_dict=inputs) # Log changes from update #pi_l_new, v_l_new, kl = sess.run([pi_loss, v_loss, approx_kl], feed_dict={v_ph: old_params - alpha * x * step}) logger.store(LossPi=pi_l_old, Entropy=ent, DeltaLossPi=(pi_l_new - pi_l_old)) start_time = time.time() o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0 # Main loop: collect experience in env and update/log each epoch for epoch in range(epochs): for t in range(local_steps_per_epoch): a, v_t, logp_t = sess.run(get_action_ops, feed_dict={x_ph: o.reshape(1, -1)}) # save and log buf.store(o, a, r, v_t, logp_t) logger.store(VVals=v_t) o, r, d, _ = env.step(a[0]) ep_ret += r ep_len += 1 terminal = d or (ep_len == max_ep_len) if terminal or (t == local_steps_per_epoch - 1): if not (terminal): print('Warning: trajectory cut off by epoch at %d steps.' % ep_len) # if trajectory didn't reach terminal state, bootstrap value target last_val = r if d else sess.run( v, feed_dict={x_ph: o.reshape(1, -1)}) buf.finish_path(last_val) if terminal: # only save EpRet / EpLen if trajectory finished logger.store(EpRet=ep_ret, EpLen=ep_len) o, r, d, ep_ret, ep_len = env.reset(), 0, False, 0, 0 # Save model if (epoch % save_freq == 0) or (epoch == epochs - 1): logger.save_state({'env': env}, None) # Perform PG update! update() # Log info about epoch logger.log_tabular('Epoch', epoch) logger.log_tabular('EpRet', average_only=True) logger.log_tabular('penalty', average_only=True) logger.log_tabular('old_penalty', average_only=True) logger.log_tabular('EpLen', average_only=True) logger.log_tabular('TotalEnvInteracts', (epoch + 1) * steps_per_epoch) logger.log_tabular('LossPi', average_only=True) logger.log_tabular('DeltaLossPi', average_only=True) logger.log_tabular('Entropy', average_only=True) logger.log_tabular('Time', time.time() - start_time) logger.dump_tabular()