Exemple #1
0
        if i % 100 == 0:
            a=np.array(buf)
            plotStats(a,opt.outputFolder+desc)
            vutils.save_image(text,    '%s/real_textures.jpg' % opt.outputFolder,  normalize=True)
            IG=invblend(fake,mixedI,alpha[:,:1],alpha[:,1:2])
            vutils.save_image(torch.cat([content[:,:3], mixedI, IG,fake, alpha, rgb_channels(A)], 2), '%s/mosaic_epoch_%03d_%s.jpg' % (opt.outputFolder, epoch, desc), normalize=True)

            fixnoise=setNoise(fixnoise)
            for net in Gnets:
                net.eval()
            with torch.no_grad():
                if False:##do whole mosaic in 1 pass -- warning, takes a lot of memory, do not use unless you have a good reason
                    templates=templates.to(device)
                    fakebig, alpha, A, mixedbig = famosGeneration(targetMosaic, fixnoise, templates.unsqueeze(0), True)
                else:
                    fakebig, alpha, A, mixedbig = splitW(targetMosaic, fixnoise, templates.unsqueeze(0), famosGeneration)
            vutils.save_image(mixedbig,'%s/mixed_epoch_%03d_%s.jpg' % (opt.outputFolder, epoch,desc), normalize =True)
            if True:#
                vutils.save_image(alpha,'%s/alpha_epoch_%03d_%s.jpg' % (opt.outputFolder, epoch,desc), normalize=False)
                vutils.save_image(rgb_channels(A), '%s/blenda_epoch_%03d_%s.jpg' % (opt.outputFolder, epoch, desc), normalize=False)##already 01
                v=nn.functional.avg_pool2d(A.view(-1, 1, A.shape[2], A.shape[3]), int(16))
                vutils.save_image(v,'%s/blendaBW_epoch_%03d_%s.jpg' % (opt.outputFolder, epoch,desc), normalize=False)

            vutils.save_image(fakebig,'%s/mosaicBig_epoch_%03d_%s.jpg' % (opt.outputFolder, epoch,desc),normalize=True)

            ##RUN OUT-OF-SAMPLE
            with torch.no_grad():
                try:
                    im=getImage(opt.testImage, bDel=True)
                    if im.shape[2]>targetMosaic.shape[2] or im.shape[3]>targetMosaic.shape[3]:
                        print ("cropping to original mosaic size")
Exemple #2
0
                              normalize=True)

            fixnoise = setNoise(fixnoise)

            vutils.save_image(fixnoise.view(-1, 1, fixnoise.shape[2],
                                            fixnoise.shape[3]),
                              '%s/noiseBig_epoch_%03d_%s.jpg' %
                              (opt.outputFolder, epoch, desc),
                              normalize=True)

            netMix.eval()
            with torch.no_grad():
                if False:  ##if desired use this to make prediction in 1 pass, may be good for real-time video
                    fakebig = ganGeneration(targetMosaic, fixnoise)
                else:
                    fakebig, _, _, _ = splitW(targetMosaic, fixnoise, None,
                                              ganGeneration)

            vutils.save_image(fakebig,
                              '%s/mosaicBig_epoch_%03d_%s.jpg' %
                              (opt.outputFolder, epoch, desc),
                              normalize=True)

            ##RUN OUT-OF-SAMPLE
            VIDEO_SAVE_FREQ = 10
            with torch.no_grad():
                import os
                t0 = time.time()
                try:
                    try:
                        files = os.listdir(opt.testImage)
                        os.makedirs(opt.outputFolder + "video/")