Exemple #1
0
    def test_gzsd(self, rcnn_test_cfg, cls_score, bbox_pred):
        unseen_class_inds = get_unseen_class_ids(dataset=rcnn_test_cfg.dataset_name, split=rcnn_test_cfg.split)
        seen_class_inds = get_seen_class_ids(dataset=rcnn_test_cfg.dataset_name, split=rcnn_test_cfg.split)
        seen_class_inds_bg = np.concatenate(([81], seen_class_inds))
        unseen_class_inds_bg = np.concatenate(([0], unseen_class_inds))

        cls_score[:, seen_class_inds_bg] = F.softmax(cls_score[:, seen_class_inds_bg], dim=1)
        cls_score[:, unseen_class_inds_bg] = F.softmax(cls_score[:, unseen_class_inds_bg], dim=1)

        
        seen_score = cls_score[:, seen_class_inds]
        unseen_score = cls_score[:, unseen_class_inds]

        
        seen=seen_score.argmax(1)
        unseen=unseen_score.argmax(1)
        seen = seen_class_inds[seen.data.cpu().numpy()]
        unseen = unseen_class_inds[unseen.data.cpu().numpy()]

        ar = torch.from_numpy(np.array([0,1,2,3]))

        for ii in range(bbox_pred.shape[0]):
            bbox_pred[ii, ar+(unseen[ii]*4) ] = bbox_pred[ii, ar+(seen[ii]*4) ]
        
        seen_score[seen_score < 0.3] = 0.0
        cls_score[:, seen_class_inds] = seen_score
        cls_score[:, unseen_class_inds] = unseen_score
        
        new_scores = cls_score[:, :-1]
        new_scores[:, 0] = (cls_score[:, 0] + cls_score[:, -1]) / 2
        cls_score = new_scores
        
        return cls_score, bbox_pred
    def load_annotations(self, ann_file, classes_to_load=None, split=None):
        self.set_classes_split()
        unseen_class_ids, seen_class_ids = get_unseen_class_ids(
            'voc') - 1, get_seen_class_ids('voc') - 1

        img_infos = []
        if self.classes_to_load == 'seen':
            self.cat_to_load = seen_class_ids
        elif self.classes_to_load == 'unseen':
            self.cat_to_load = unseen_class_ids

        self.class_names_to_load = np.array(self.CLASSES)[self.cat_to_load]

        # classes_loaded = []
        img_ids = mmcv.list_from_file(ann_file)
        for img_id in img_ids:
            filename = 'JPEGImages/{}.jpg'.format(img_id)
            xml_path = osp.join(self.img_prefix, 'Annotations',
                                '{}.xml'.format(img_id))
            tree = ET.parse(xml_path)
            root = tree.getroot()
            size = root.find('size')
            width = int(size.find('width').text)
            height = int(size.find('height').text)

            # include_image = include_image = self.should_include_image(root)
            include_image = self.should_include_image(root)
            # if classes_to_exclude is not None:
            #     for obj in root.findall('object'):
            #         name = obj.find('name').text
            #         if name in classes_to_exclude:
            #             include_image = False
            #             break
            # classes_loaded.append(name)

            if include_image == True:
                img_infos.append(
                    dict(id=img_id,
                         filename=filename,
                         width=width,
                         height=height))

        # import pdb; pdb.set_trace()
        # files = ["VOC2007/"+filename['filename'] for filename in img_infos]
        # print(f"classes loaded {np.unique(np.array(classes_loaded))}")

        return img_infos
Exemple #3
0
def copy_synthesised_weights(model,
                             filename,
                             dataset_name='voc',
                             split='65_15'):

    logger = get_root_logger('INFO')

    checkpoint = torch.load(filename, map_location='cpu')
    if isinstance(checkpoint, OrderedDict):
        state_dict = checkpoint
    elif isinstance(checkpoint, dict) and 'state_dict' in checkpoint:
        state_dict = checkpoint['state_dict']
    else:
        raise RuntimeError(
            'No state_dict found in checkpoint file {}'.format(filename))

    if hasattr(model, 'module'):
        own_state = model.module.state_dict()
    else:
        own_state = model.state_dict()

    unseen_class_inds = get_unseen_class_ids(dataset=dataset_name, split=split)
    seen_bg_weights = own_state['bbox_head.fc_cls.weight'][0].data.cpu().numpy(
    ).copy()
    seen_bg_bias = own_state['bbox_head.fc_cls.bias'][0].data.cpu().numpy(
    ).copy()

    own_state['bbox_head.fc_cls.bias'][unseen_class_inds] = state_dict[
        'fc1.bias'][1:]
    own_state['bbox_head.fc_cls.weight'][unseen_class_inds] = state_dict[
        'fc1.weight'][1:]

    alpha1 = 0.35
    alpha2 = 0.65
    own_state['bbox_head.fc_cls.bias'][0] = alpha1 * own_state[
        'bbox_head.fc_cls.bias'][0] + alpha2 * state_dict['fc1.bias'][0]
    own_state['bbox_head.fc_cls.weight'][0] = alpha1 * own_state[
        'bbox_head.fc_cls.weight'][0] + alpha2 * state_dict['fc1.weight'][0]

    logger.info(
        f'{dataset_name} {unseen_class_inds.shape} seenbg: {alpha1} synbg: {alpha2} copied classifier weights from {filename} \n'
    )
    return seen_bg_weights, seen_bg_bias
    def _filter_classes(self, classes_to_load=None, exclude_all=False, split='65_15'):
        """
        exclude_all: exludes all images where any object of exluded categories is present
        """

        img_ids = self.coco.getImgIds()
        cat_ids = np.array(self.coco.getCatIds())

        unseen_class_labels, seen_class_labels = get_unseen_class_ids('coco', split=split)-1, get_seen_class_ids('coco', split=split) -1
        seen_classes_cat_ids = cat_ids[seen_class_labels]
        unseen_classes_cat_ids = cat_ids[unseen_class_labels]
        self.cat_to_load = cat_ids
        if classes_to_load == 'seen':
            self.cat_to_load = seen_classes_cat_ids
        elif classes_to_load == 'unseen':
            self.cat_to_load = unseen_classes_cat_ids


        images_ids_to_exclude = []
        images_ids_to_load = []
        for index in range(len(img_ids)):
            ann_ids = self.coco.getAnnIds(imgIds=img_ids[index])
            target = self.coco.loadAnns(ann_ids)
            
            for i in range(len(target)):
                if exclude_all:
                    if target[i]['category_id'] not in self.cat_to_load:
                        # unknown object found in the image, therefore, ignore the image
                        images_ids_to_exclude.append(img_ids[index])
                        break
                else:
                    if target[i]['category_id'] in self.cat_to_load:
                        images_ids_to_load.append(img_ids[index])
                        break
                    
        if exclude_all:
            images_ids_to_load = np.setdiff1d(np.array(img_ids), np.array(images_ids_to_exclude)).astype(int).tolist()

        # import pdb; pdb.set_trace()


        return images_ids_to_load 
Exemple #5
0
    def test_zsd(self, rcnn_test_cfg, cls_score, bbox_pred):
        unseen_class_inds = get_unseen_class_ids(dataset=rcnn_test_cfg.dataset_name, split=rcnn_test_cfg.split)
        seen_class_inds = get_seen_class_ids(dataset=rcnn_test_cfg.dataset_name, split=rcnn_test_cfg.split)
        
        seen_score = cls_score[:, seen_class_inds]
        unseen_score = cls_score[:, unseen_class_inds]

        seen=seen_score.argmax(1)
        unseen=unseen_score.argmax(1)
        seen = seen_class_inds[seen.data.cpu().numpy()]
        unseen = unseen_class_inds[unseen.data.cpu().numpy()]

        ar = torch.from_numpy(np.array([0,1,2,3]))

        for ii in range(seen.shape[0]):
            bbox_pred[ii, ar+(unseen[ii]*4) ] = bbox_pred[ii, ar+(seen[ii]*4) ]
        cls_score[:,seen_class_inds]=-1.0e3
        cls_score = F.softmax(cls_score, dim=1)


        return cls_score, bbox_pred
Exemple #6
0
    def load_annotations(self, ann_file,  classes_to_load=None, split=None):
        img_infos = []
        unseen_class_ids, seen_class_ids = get_unseen_class_ids('imagenet')-1, get_seen_class_ids('imagenet')-1

        if self.classes_to_load == 'seen':
            self.cat_to_load = seen_class_ids
        elif self.classes_to_load == 'unseen':
            self.cat_to_load = unseen_class_ids

        self.class_names_to_load = np.array(self.CLASSES)[self.cat_to_load]
        print(self.class_names_to_load)
        
        img_ids = mmcv.list_from_file(ann_file)
        img_ids = [img_id.split(' ')[0] for img_id in img_ids]
        img_ids = [img_id for img_id in img_ids if 'extra' not in img_id]
        map_det_file = open('map_det.txt', 'r')
        map_det = map_det_file.readlines()
        map_det = [det.strip().split(' ') for det in map_det]
        self.map_det = {det[0]: det[2] for det in map_det}

        for img_id in img_ids:
            data_split = 'train' if 'train' in img_id else 'val'

            filename = f'Data/DET/{data_split}/{img_id}.JPEG'
            xml_path = f'{self.img_prefix}Annotations/DET/{data_split}/{img_id}.xml'

            tree = ET.parse(xml_path)
            root = tree.getroot()
            size = root.find('size')
            width = int(size.find('width').text)
            height = int(size.find('height').text)

            include_image = self.should_include_image(root)
            
            if include_image == True:
                img_infos.append(
                    dict(id=img_id, filename=filename, width=width, height=height))
        print(f'total {self.classes_to_load} images loaded {len(img_infos)}')
        return img_infos
Exemple #7
0
 def get_unseen_class_inds(self, dataset='voc'):
     return get_unseen_class_ids(dataset)
def print_map_summary(aps,
                      results,
                      dataset=None,
                      dataset_name=None,
                      ranges=None,
                      recalls=None,
                      split='65_15'):
    """Print mAP and results of each class.

    Args:
        mean_ap(float): calculated from `eval_map`
        results(list): calculated from `eval_map`
        dataset(None or str or list): dataset name or dataset classes.
        ranges(list or Tuple): ranges of areas
    """
    num_scales = len(results[0]['ap']) if isinstance(results[0]['ap'],
                                                     np.ndarray) else 1
    if ranges is not None:
        assert len(ranges) == num_scales

    num_classes = len(results)
    print(f"num_classes ----------- {num_classes}")
    recalls = np.zeros((num_scales, num_classes), dtype=np.float32)
    precisions = np.zeros((num_scales, num_classes), dtype=np.float32)
    aps = np.zeros((num_scales, num_classes), dtype=np.float32)
    num_gts = np.zeros((num_scales, num_classes), dtype=int)
    for i, cls_result in enumerate(results):
        if cls_result['recall'].size > 0:
            recalls[:, i] = np.array(cls_result['recall'], ndmin=2)[:, -1]
            precisions[:, i] = np.array(cls_result['precision'], ndmin=2)[:,
                                                                          -1]
        aps[:, i] = cls_result['ap']
        num_gts[:, i] = cls_result['num_gts']

    if dataset is None:
        label_names = [str(i) for i in range(1, num_classes + 1)]
    elif mmcv.is_str(dataset):
        label_names = get_classes(dataset)
    else:
        label_names = dataset

    # if not isinstance(mean_ap, list):
    #     mean_ap = [mean_ap]
    # if not isinstance(mean_recall, list):
    #     mean_recall = [mean_recall]
    header = ['class', 'gts', 'dets', 'recall', 'precision', 'ap']
    indexes = [np.arange(0, len(label_names))]

    if dataset_name is not None:
        # print(dataset_name)
        unseen_class_inds = get_unseen_class_ids(dataset=dataset_name,
                                                 split=split) - 1
        seen_class_inds = get_seen_class_ids(dataset=dataset_name,
                                             split=split) - 1
        indexes = [seen_class_inds, unseen_class_inds]

    means_table = []
    for i in range(num_scales):
        if ranges is not None:
            print("Area range ", ranges[i])
        for ind in range(len(indexes)):
            table_data = [header]
            # for j in range(num_classes):
            classes_inds = indexes[ind]
            curr_aps = []
            curr_recalls = []
            for j in classes_inds:
                if num_gts[i, j] > 0:
                    row_data = [
                        label_names[j], num_gts[i, j], results[j]['num_dets'],
                        '{:.3f}'.format(recalls[i, j]),
                        '{:.3f}'.format(precisions[i,
                                                   j]), '{:.3f}'.format(aps[i,
                                                                            j])
                    ]
                    table_data.append(row_data)
                    curr_aps.append(aps[i, j])
                    curr_recalls.append(recalls[i, j])

            # import pdb; pdb.set_trace()
            mean_ap = np.array(
                curr_aps).mean().item() if len(curr_aps) > 0 else 0.0
            mean_recall = np.array(
                curr_recalls).mean().item() if len(curr_recalls) > 0 else 0.0
            table_data.append([
                'mean', '', '', '{:.3f}'.format(mean_recall), '',
                '{:.3f}'.format(mean_ap)
            ])
            means_table.append([
                'mean', '', '', '{:.3f}'.format(mean_recall), '',
                '{:.3f}'.format(mean_ap)
            ])
            table = AsciiTable(table_data)
            table.inner_footing_row_border = True
            print(table.table)

        table = AsciiTable(means_table)
        table.inner_footing_row_border = True
        print(table.table)