def test_sum_node_is_complete(): # create a sum node with a scope scope = frozenset({0, 2, 7, 13}) sum_node = SumNode(var_scope=scope) # creating children with same scope children = [ProductNode(var_scope=scope) for i in range(4)] for prod_node in children: sum_node.add_child(prod_node, 1.0) assert sum_node.is_complete() # now altering one child's scope with one less var children[0].var_scope = frozenset({0, 7, 13}) assert sum_node.is_complete() is False # now adding one more children[0].var_scope = scope children[3].var_scope = frozenset({0, 2, 7, 13, 3}) assert not sum_node.is_complete() # now checking with indicator input nodes var = 4 sum_node = SumNode(var_scope=frozenset({var})) children = [CategoricalIndicatorNode(var=var, var_val=i) for i in range(4)] for input_node in children: sum_node.add_child(input_node, 1.0) assert sum_node.is_complete()
def __init__(self, nodes=None, vars=None): """ WRITEME """ if nodes is None: # self._vars = vars nodes = [CategoricalIndicatorNode(var, i) for var in range(len(vars)) for i in range(vars[var])] # self._feature_vals = [2 for i in range(len(nodes))] else: # assuming the nodes are complete and coherent vars_dict = {} for node in nodes: try: vars_dict[node.var] += 1 except: vars_dict[node.var] = 1 sorted_keys = sorted(vars_dict.items(), key=lambda t: t[0]) vars = [vals for id, vals in sorted_keys] # self.feature_vals = compute_feature_vals(nodes) CategoricalInputLayer.__init__(self, nodes, vars) self._feature_vals = compute_feature_vals(nodes)
def test_categorical_indicator_node_create_and_eval(): # created a node on the first var and its first value ind = CategoricalIndicatorNode(0, 0) # seen x0 = 0 -> 1. ind.eval(0) assert ind.log_val == 0. # this indicator is not fired ind.eval(1) assert ind.log_val == LOG_ZERO # all indicators for that var are fired ind.eval(MARG_IND) assert ind.log_val == 0. # the var has only 2 values, but the node does not know! ind.eval(2) assert ind.log_val == LOG_ZERO
def test_sum_layer_is_complete(): # creating two scopes and two sum nodes scope1 = frozenset({0, 2, 3}) scope2 = frozenset({10}) sum_node_1 = SumNode(var_scope=scope1) sum_node_2 = SumNode(var_scope=scope2) # adding product nodes as children to the first, indicator the second for i in range(4): sum_node_1.add_child(ProductNode(var_scope=scope1), 1.0) sum_node_2.add_child(CategoricalIndicatorNode(var=10, var_val=i), 1.0) # creating sum layer sum_layer = SumLayer(nodes=[sum_node_1, sum_node_2]) assert sum_layer.is_complete() # now with errors in scope scope3 = frozenset({6}) sum_node_1 = SumNode(var_scope=scope1) sum_node_2 = SumNode(var_scope=scope3) # adding product nodes as children to the first, indicator the second for i in range(4): sum_node_1.add_child(ProductNode(var_scope=scope1), 1.0) sum_node_2.add_child(CategoricalIndicatorNode(var=10, var_val=i), 1.0) # creating sum layer sum_layer = SumLayer(nodes=[sum_node_1, sum_node_2]) assert not sum_layer.is_complete() sum_node_2.var_scope = scope2 assert sum_layer.is_complete() sum_node_2.children[3].var_scope = scope3 assert not sum_layer.is_complete()
def test_categorical_input_layer(): print('categorical input layer') # I could loop through alpha as well alpha = 0.1 for var_id1 in range(len(vars)): for var_id2 in range(len(vars)): for var_val1 in range(vars[var_id1]): print('varid1, varid2, varval1', var_id1, var_id2, var_val1) # var_id1 = 0 # var_val1 = 0 node1 = CategoricalIndicatorNode(var_id1, var_val1) # var_id2 = 0 var_vals2 = vars[var_id2] node2 = CategoricalSmoothedNode( var_id2, var_vals2, alpha, freqs[var_id2]) # creating the generic input layer input_layer = CategoricalInputLayer([node1, node2]) # evaluating according to an observation input_layer.eval(obs) layer_evals = input_layer.node_values() print('layer eval nodes') print(layer_evals) # computing evaluation by hand val1 = 1 if var_val1 == obs[var_id1] or obs[ var_id1] == MARG_IND else 0 logval1 = log(val1) if val1 == 1 else LOG_ZERO logval2 = compute_smoothed_ll( obs[var_id2], freqs[var_id2], vars[var_id2], alpha) logvals = [logval1, logval2] print('log vals') print(logvals) for logval, eval in zip(logvals, layer_evals): if logval == LOG_ZERO: # for zero log check this way for correctness assert IS_LOG_ZERO(eval) is True else: assert_almost_equal(logval, eval, PRECISION)
def test_categorical_indicator_node_create_and_eval_keras(): alpha = 0.0 data = numpy.array([[1, 1, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0], [1, 0, 0, 0], [1, 0, 1, 0], [0, 1, 1, 0], [MARG_IND, 0, 0, 1], [MARG_IND, MARG_IND, MARG_IND, MARG_IND]]).astype(numpy.int32) input = K.placeholder(ndim=2, dtype='int32') for i, var in enumerate(vars): for j in [0, 1]: log_vals = [] print('var {} val {}'.format(i, j)) smi = CategoricalIndicatorNode(i, j) print(smi) smi.build_k(input) for d in data: # print(d) smi.eval(d) log_vals.append(smi.log_val) print('smi values') print(smi.log_val) eval_input_node_f = K.function([input], [smi.log_vals]) keras_log_vals = eval_input_node_f([data])[0] print('keras vals') print(keras_log_vals) assert_array_almost_equal(numpy.array(log_vals)[:, numpy.newaxis], keras_log_vals, decimal=4)
def linked_categorical_input_to_indicators(spn, input_layer=None): """ Convertes a linked spn categorical input layer into an indicator one """ # # get child, parent relations for node relinking child_assoc = retrieve_children_parent_assoc(spn) # # get input layer cat_input_layer = spn.input_layer() assert isinstance(cat_input_layer, CategoricalSmoothedLayerLinked) # # one indicator node for each var value vars = cat_input_layer.vars() if not vars: vars = list(sorted({node.var for node in cat_input_layer.nodes()})) feature_values = cat_input_layer.feature_vals() # print('vars', vars) # print('feature values', feature_values) indicator_nodes = [ CategoricalIndicatorNode(var, val) for i, var in enumerate(vars) for val in range(feature_values[i]) ] # for node in indicator_nodes: # print(node) indicator_map = defaultdict(set) for ind_node in indicator_nodes: indicator_map[ind_node.var].add(ind_node) sum_nodes = [] # # as many sum nodes as cat nodes for node in cat_input_layer.nodes(): sum_node = SumNode(var_scope=frozenset([node.var])) sum_nodes.append(sum_node) for ind_node in sorted(indicator_map[node.var], key=lambda x: x.var_val): sum_node.add_child(ind_node, numpy.exp(node._var_probs[ind_node.var_val])) # # removing links to parents parents = child_assoc[node] for p_node in parents: # # assume it to be a product node # TODO: generalize assert isinstance(p_node, ProductNode) p_node.children.remove(node) p_node.add_child(sum_node) # # creating layer sum_layer = SumLayerLinked(sum_nodes) indicator_layer = CategoricalIndicatorLayerLinked(indicator_nodes) cat_input_layer.disconnect_layer() spn.set_input_layer(indicator_layer) spn.insert_layer(sum_layer, 0) return spn
def test_categorical_indicator_layer_vars(): # create indicator nodes first ind1 = CategoricalIndicatorNode(var=0, var_val=0) ind2 = CategoricalIndicatorNode(var=3, var_val=0) ind3 = CategoricalIndicatorNode(var=3, var_val=1) ind4 = CategoricalIndicatorNode(var=2, var_val=0) ind5 = CategoricalIndicatorNode(var=1, var_val=1) ind6 = CategoricalIndicatorNode(var=2, var_val=1) ind7 = CategoricalIndicatorNode(var=1, var_val=0) ind8 = CategoricalIndicatorNode(var=0, var_val=1) ind9 = CategoricalIndicatorNode(var=2, var_val=2) ind10 = CategoricalIndicatorNode(var=3, var_val=2) ind11 = CategoricalIndicatorNode(var=3, var_val=3) # building the layer from nodes layer = CategoricalIndicatorLayer(nodes=[ind1, ind2, ind3, ind4, ind5, ind6, ind7, ind8, ind9, ind10, ind11]) # checking for the construction of the vars property layer_vars = layer.vars() assert vars == layer_vars
def test_spn_set_get_weights(): # create a simple spn root_node = SumNode() root_layer = SumLayer([root_node]) prod_node_1 = ProductNode() prod_node_2 = ProductNode() root_node.add_child(prod_node_1, 0.5) root_node.add_child(prod_node_2, 0.5) prod_layer = ProductLayer([prod_node_1, prod_node_2]) sum_node_1 = SumNode() sum_node_2 = SumNode() sum_node_3 = SumNode() prod_node_1.add_child(sum_node_1) prod_node_1.add_child(sum_node_2) prod_node_2.add_child(sum_node_2) prod_node_2.add_child(sum_node_3) sum_layer = SumLayer([sum_node_1, sum_node_2, sum_node_3]) ind_node_1 = CategoricalIndicatorNode(var=0, var_val=1) ind_node_2 = CategoricalIndicatorNode(var=0, var_val=1) ind_node_3 = CategoricalIndicatorNode(var=0, var_val=1) ind_node_4 = CategoricalIndicatorNode(var=0, var_val=1) ind_node_5 = CategoricalIndicatorNode(var=0, var_val=1) input_layer = CategoricalInputLayer(nodes=[ind_node_1, ind_node_2, ind_node_3, ind_node_4, ind_node_5]) sum_node_1.add_child(ind_node_1, 0.2) sum_node_1.add_child(ind_node_2, 0.2) sum_node_2.add_child(ind_node_2, 0.2) sum_node_2.add_child(ind_node_3, 0.2) sum_node_2.add_child(ind_node_4, 0.2) sum_node_3.add_child(ind_node_4, 0.2) sum_node_3.add_child(ind_node_5, 0.2) spn = Spn(input_layer=input_layer, layers=[sum_layer, prod_layer, root_layer]) print(spn) # storing these weights curr_weights = spn.get_weights() # setting the new weights spn.set_weights(weights_ds) # getting them again new_weights = spn.get_weights() # comparing them assert new_weights == weights_ds # now setting back the previous one spn.set_weights(curr_weights) # getting them back again old_weights = spn.get_weights() # and checking assert old_weights == curr_weights
def build_linked_layered_spn(print_spn=True): # # building an indicator layer ind_x_00 = CategoricalIndicatorNode(0, 0) ind_x_01 = CategoricalIndicatorNode(0, 1) ind_x_10 = CategoricalIndicatorNode(1, 0) ind_x_11 = CategoricalIndicatorNode(1, 1) ind_x_20 = CategoricalIndicatorNode(2, 0) ind_x_21 = CategoricalIndicatorNode(2, 1) input_layer = CategoricalIndicatorLayer( [ind_x_00, ind_x_01, ind_x_10, ind_x_11, ind_x_20, ind_x_21]) # # sum layer # sum_node_1 = SumNode(frozenset([0])) sum_node_1.add_child(ind_x_00, 0.1) sum_node_1.add_child(ind_x_01, 0.9) sum_node_2 = SumNode(frozenset([0])) sum_node_2.add_child(ind_x_00, 0.4) sum_node_2.add_child(ind_x_01, 0.6) sum_node_3 = SumNode(frozenset([1])) sum_node_3.add_child(ind_x_10, 0.3) sum_node_3.add_child(ind_x_11, 0.7) sum_node_4 = SumNode(frozenset([1])) sum_node_4.add_child(ind_x_10, 0.6) sum_node_4.add_child(ind_x_11, 0.4) sum_node_5 = SumNode(frozenset([2])) sum_node_5.add_child(ind_x_20, 0.5) sum_node_5.add_child(ind_x_21, 0.5) sum_node_6 = SumNode(frozenset([2])) sum_node_6.add_child(ind_x_20, 0.2) sum_node_6.add_child(ind_x_21, 0.8) sum_layer_1 = SumLayerLinked([ sum_node_1, sum_node_2, sum_node_3, sum_node_4, sum_node_5, sum_node_6 ]) # # product nodes # # xy prod_node_7 = ProductNode(frozenset([0, 1])) prod_node_7.add_child(sum_node_1) prod_node_7.add_child(sum_node_3) prod_node_8 = ProductNode(frozenset([0, 1])) prod_node_8.add_child(sum_node_2) prod_node_8.add_child(sum_node_4) prod_node_9 = ProductNode(frozenset([0, 1])) prod_node_9.add_child(sum_node_1) prod_node_9.add_child(sum_node_3) # # yz prod_node_10 = ProductNode(frozenset([1, 2])) prod_node_10.add_child(sum_node_4) prod_node_10.add_child(sum_node_5) prod_node_11 = ProductNode(frozenset([1, 2])) prod_node_11.add_child(sum_node_4) prod_node_11.add_child(sum_node_6) prod_layer_2 = ProductLayerLinked( [prod_node_7, prod_node_8, prod_node_9, prod_node_10, prod_node_11]) # # sum nodes # # xy sum_node_12 = SumNode(frozenset([0, 1])) sum_node_12.add_child(prod_node_7, 0.1) sum_node_12.add_child(prod_node_8, 0.9) sum_node_13 = SumNode(frozenset([0, 1])) sum_node_13.add_child(prod_node_8, 0.7) sum_node_13.add_child(prod_node_9, 0.3) # # yz sum_node_14 = SumNode(frozenset([1, 2])) sum_node_14.add_child(prod_node_10, 0.6) sum_node_14.add_child(prod_node_11, 0.4) sum_layer_3 = SumLayerLinked([sum_node_12, sum_node_13, sum_node_14]) # # product nodes prod_node_15 = ProductNode(frozenset([0, 1, 2])) prod_node_15.add_child(sum_node_12) prod_node_15.add_child(sum_node_6) prod_node_16 = ProductNode(frozenset([0, 1, 2])) prod_node_16.add_child(sum_node_13) prod_node_16.add_child(sum_node_5) prod_node_17 = ProductNode(frozenset([0, 1, 2])) prod_node_17.add_child(sum_node_2) prod_node_17.add_child(sum_node_14) prod_layer_4 = ProductLayerLinked( [prod_node_15, prod_node_16, prod_node_17]) # # root sum_node_18 = SumNode(frozenset([0, 1, 2])) sum_node_18.add_child(prod_node_15, 0.2) sum_node_18.add_child(prod_node_16, 0.2) sum_node_18.add_child(prod_node_17, 0.6) sum_layer_5 = SumLayerLinked([sum_node_18]) # # creating the spn layers = [ sum_layer_1, prod_layer_2, sum_layer_3, prod_layer_4, sum_layer_5 ] nodes = [node for layer in layers for node in layer.nodes()] spn = SpnLinked(input_layer=input_layer, layers=layers) if print_spn: print(spn) return spn, layers, nodes
def test_layered_linked_spn(): # creating single nodes # this code is replicated TODO: make a function root = SumNode() prod1 = ProductNode() prod2 = ProductNode() prod3 = ProductNode() sum1 = SumNode() sum2 = SumNode() sum3 = SumNode() sum4 = SumNode() ind1 = CategoricalIndicatorNode(var=0, var_val=0) ind2 = CategoricalIndicatorNode(var=0, var_val=1) ind3 = CategoricalIndicatorNode(var=1, var_val=0) ind4 = CategoricalIndicatorNode(var=1, var_val=1) ind5 = CategoricalIndicatorNode(var=2, var_val=0) ind6 = CategoricalIndicatorNode(var=2, var_val=1) ind7 = CategoricalIndicatorNode(var=2, var_val=2) ind8 = CategoricalIndicatorNode(var=3, var_val=0) ind9 = CategoricalIndicatorNode(var=3, var_val=1) ind10 = CategoricalIndicatorNode(var=3, var_val=2) ind11 = CategoricalIndicatorNode(var=3, var_val=3) prod4 = ProductNode() prod5 = ProductNode() prod6 = ProductNode() prod7 = ProductNode() # linking nodes root.add_child(prod1, 0.3) root.add_child(prod2, 0.3) root.add_child(prod3, 0.4) prod1.add_child(sum1) prod1.add_child(sum2) prod2.add_child(ind7) prod2.add_child(ind8) prod2.add_child(ind11) prod3.add_child(sum3) prod3.add_child(sum4) sum1.add_child(ind1, 0.3) sum1.add_child(ind2, 0.3) sum1.add_child(prod4, 0.4) sum2.add_child(ind2, 0.5) sum2.add_child(prod4, 0.2) sum2.add_child(prod5, 0.3) sum3.add_child(prod6, 0.5) sum3.add_child(prod7, 0.5) sum4.add_child(prod6, 0.5) sum4.add_child(prod7, 0.5) prod4.add_child(ind3) prod4.add_child(ind4) prod5.add_child(ind5) prod5.add_child(ind6) prod6.add_child(ind9) prod6.add_child(ind10) prod7.add_child(ind9) prod7.add_child(ind10) spn = SpnFactory.layered_linked_spn(root) print(spn) print(spn.stats())
def test_linked_to_theano_indicator(): # creating single nodes root = SumNode() prod1 = ProductNode() prod2 = ProductNode() prod3 = ProductNode() sum1 = SumNode() sum2 = SumNode() sum3 = SumNode() sum4 = SumNode() ind1 = CategoricalIndicatorNode(var=0, var_val=0) ind2 = CategoricalIndicatorNode(var=0, var_val=1) ind3 = CategoricalIndicatorNode(var=1, var_val=0) ind4 = CategoricalIndicatorNode(var=1, var_val=1) ind5 = CategoricalIndicatorNode(var=2, var_val=0) ind6 = CategoricalIndicatorNode(var=2, var_val=1) ind7 = CategoricalIndicatorNode(var=2, var_val=2) ind8 = CategoricalIndicatorNode(var=3, var_val=0) ind9 = CategoricalIndicatorNode(var=3, var_val=1) ind10 = CategoricalIndicatorNode(var=3, var_val=2) ind11 = CategoricalIndicatorNode(var=3, var_val=3) prod4 = ProductNode() prod5 = ProductNode() prod6 = ProductNode() prod7 = ProductNode() # linking nodes root.add_child(prod1, 0.3) root.add_child(prod2, 0.3) root.add_child(prod3, 0.4) prod1.add_child(sum1) prod1.add_child(sum2) prod2.add_child(ind7) prod2.add_child(ind8) prod2.add_child(ind11) prod3.add_child(sum3) prod3.add_child(sum4) sum1.add_child(ind1, 0.3) sum1.add_child(ind2, 0.3) sum1.add_child(prod4, 0.4) sum2.add_child(ind2, 0.5) sum2.add_child(prod4, 0.2) sum2.add_child(prod5, 0.3) sum3.add_child(prod6, 0.5) sum3.add_child(prod7, 0.5) sum4.add_child(prod6, 0.5) sum4.add_child(prod7, 0.5) prod4.add_child(ind3) prod4.add_child(ind4) prod5.add_child(ind5) prod5.add_child(ind6) prod6.add_child(ind9) prod6.add_child(ind10) prod7.add_child(ind9) prod7.add_child(ind10) # building layers from nodes root_layer = SumLayerLinked([root]) prod_layer = ProductLayerLinked([prod1, prod2, prod3]) sum_layer = SumLayerLinked([sum1, sum2, sum3, sum4]) aprod_layer = ProductLayerLinked([prod4, prod5, prod6, prod7]) ind_layer = CategoricalIndicatorLayer(nodes=[ ind1, ind2, ind3, ind4, ind5, ind6, ind7, ind8, ind9, ind10, ind11 ]) # creating the linked spn spn_linked = SpnLinked( input_layer=ind_layer, layers=[aprod_layer, sum_layer, prod_layer, root_layer]) print(spn_linked) # converting to theano repr spn_theano = SpnFactory.linked_to_theano(spn_linked) print(spn_theano) # time for some inference comparison for instance in I: print('linked') res_l = spn_linked.eval(instance) print(res_l) print('theano') res_t = spn_theano.eval(instance) print(res_t) assert_array_almost_equal(res_l, res_t)
def build_linked_spn_from_scope_graph(scope_graph, k, root_scope=None, feature_values=None): """ Turning a ScopeGraph into an SPN by puttin k sum nodes for each scope and a combinatorial number of product nodes to wire the partition nodes This is the algorithm used in Poon2011 and is shown (and used) as BuildSPN in Dennis2012 """ if not root_scope: root_scope = scope_graph.root n_vars = len(root_scope.vars) if not feature_values: # # assuming binary r.v.s feature_values = [2 for _i in range(n_vars)] # # adding leaves leaves_dict = defaultdict(list) leaves_list = [] for var in sorted(root_scope.vars): for var_val in range(feature_values[var]): leaf = CategoricalIndicatorNode(var, var_val) leaves_list.append(leaf) leaves_dict[var].append(leaf) input_layer = CategoricalIndicatorLayer(nodes=leaves_list, vars=list(sorted(root_scope.vars))) # # in a first pass we need to assign each scope/region k sum nodes sum_nodes_assoc = {} for r in scope_graph.traverse_scopes(root_scope=root_scope): num_sum_nodes = k if r == root_scope: num_sum_nodes = 1 added_sum_nodes = [ SumNode(var_scope=r.vars) for i in range(num_sum_nodes) ] # # creating a sum layer sum_layer = SumLayer(added_sum_nodes) sum_nodes_assoc[r] = sum_layer # # if this is a univariate scope, we link it to leaves corresponding to its r.v. if r.is_atomic(): single_rv = set(r.vars).pop() rv_leaves = leaves_dict[single_rv] uniform_weight = 1.0 / len(rv_leaves) for s in added_sum_nodes: for leaf in rv_leaves: s.add_child(leaf, uniform_weight) # # linking to input layer sum_layer.add_input_layer(input_layer) input_layer.add_output_layer(sum_layer) layers = [] # # looping again to add and wire product nodes for r in scope_graph.traverse_scopes(root_scope=root_scope): sum_layer = sum_nodes_assoc[r] layers.append(sum_layer) for p in r.partitions: sum_layer_descs = [sum_nodes_assoc[r_p] for r_p in p.scopes] sum_nodes_lists = [ list(layer.nodes()) for layer in sum_layer_descs ] num_prod_nodes = numpy.prod([len(r_p) for r_p in sum_nodes_lists]) # # adding product nodes added_prod_nodes = [ ProductNode(var_scope=r.vars) for i in range(num_prod_nodes) ] # # adding product layer and linking prod_layer = ProductLayer(added_prod_nodes) sum_layer.add_input_layer(prod_layer) prod_layer.add_output_layer(sum_layer) for desc in sum_layer_descs: prod_layer.add_input_layer(desc) desc.add_output_layer(prod_layer) layers.append(prod_layer) # # linking to parents sum_nodes_parents = sum_layer.nodes() for sum_node in sum_nodes_parents: uniform_weight = 1.0 / (len(added_prod_nodes) * len(r.partitions)) for prod_node in added_prod_nodes: sum_node.add_child(prod_node, uniform_weight) # # linking to children sum_nodes_to_wire = list(itertools.product(*sum_nodes_lists)) assert len(added_prod_nodes) == len(sum_nodes_to_wire) for prod_node, sum_nodes in zip(added_prod_nodes, sum_nodes_to_wire): for sum_node in sum_nodes: prod_node.add_child(sum_node) # # toposort layers = topological_layer_sort(layers) spn = LinkedSpn(layers=layers, input_layer=input_layer) return spn
def test_build_linked_spn_from_scope_graph(): # # creating a region graph as an input scope graph n_cols = 2 n_rows = 2 coarse = 2 # # create initial region root_region = Region.create_whole_region(n_rows, n_cols) region_graph = create_poon_region_graph(root_region, coarse=coarse) # print(region_graph) print('# partitions', region_graph.n_partitions()) print('# regions', region_graph.n_scopes()) print(region_graph) # # k = 2 spn = build_linked_spn_from_scope_graph(region_graph, k) print(spn) print(spn.stats()) # # back to the scope graph root_layer = list(spn.root_layer().nodes()) assert len(root_layer) == 1 root = root_layer[0] scope_graph = get_scope_graph_from_linked_spn(root) print(scope_graph) assert scope_graph == region_graph # # building an spn from scratch # # building leaf nodes n_vars = 4 vars = [0, 1, 2, 3] leaves = [ CategoricalIndicatorNode(var, val) for var in range(n_vars) for val in [0, 1] ] input_layer = CategoricalIndicatorLayer(nodes=leaves, vars=vars) # # building root root_node = SumNode(var_scope=frozenset(vars)) root_layer = SumLayer([root_node]) # # building product nodes prod_list_1 = [ProductNode(var_scope=vars) for i in range(4)] prod_list_2 = [ProductNode(var_scope=vars) for i in range(4)] prod_nodes_1 = prod_list_1 + prod_list_2 product_layer_1 = ProductLayer(prod_nodes_1) for p in prod_nodes_1: root_node.add_child(p, 1.0 / len(prod_nodes_1)) # # build sum nodes sum_list_1 = [SumNode() for i in range(2)] sum_list_2 = [SumNode() for i in range(2)] sum_list_3 = [SumNode() for i in range(2)] sum_list_4 = [SumNode() for i in range(2)] sum_layer_2 = SumLayer(sum_list_1 + sum_list_2 + sum_list_3 + sum_list_4) sum_pairs = [] for s_1 in sum_list_1: for s_2 in sum_list_2: sum_pairs.append((s_1, s_2)) for p, (s_1, s_2) in zip(prod_list_1, sum_pairs): p.add_child(s_1) p.add_child(s_2) sum_pairs = [] for s_3 in sum_list_3: for s_4 in sum_list_4: sum_pairs.append((s_3, s_4)) for p, (s_3, s_4) in zip(prod_list_2, sum_pairs): p.add_child(s_3) p.add_child(s_4) # # again product nodes prod_list_3 = [ProductNode() for i in range(4)] prod_list_4 = [ProductNode() for i in range(4)] prod_list_5 = [ProductNode() for i in range(4)] prod_list_6 = [ProductNode() for i in range(4)] product_layer_3 = ProductLayer(prod_list_3 + prod_list_4 + prod_list_5 + prod_list_6) for s in sum_list_1: for p in prod_list_3: s.add_child(p, 1.0 / len(prod_list_3)) for s in sum_list_2: for p in prod_list_4: s.add_child(p, 1.0 / len(prod_list_4)) for s in sum_list_3: for p in prod_list_5: s.add_child(p, 1.0 / len(prod_list_5)) for s in sum_list_4: for p in prod_list_6: s.add_child(p, 1.0 / len(prod_list_6)) # # build sum nodes sum_list_5 = [SumNode() for i in range(2)] sum_list_6 = [SumNode() for i in range(2)] sum_list_7 = [SumNode() for i in range(2)] sum_list_8 = [SumNode() for i in range(2)] sum_layer_4 = SumLayer(sum_list_5 + sum_list_6 + sum_list_7 + sum_list_8) sum_pairs = [] for s_5 in sum_list_5: for s_7 in sum_list_7: sum_pairs.append((s_5, s_7)) for p, (s_5, s_7) in zip(prod_list_3, sum_pairs): p.add_child(s_5) p.add_child(s_7) sum_pairs = [] for s_6 in sum_list_6: for s_8 in sum_list_8: sum_pairs.append((s_6, s_8)) for p, (s_6, s_8) in zip(prod_list_4, sum_pairs): p.add_child(s_6) p.add_child(s_8) sum_pairs = [] for s_5 in sum_list_5: for s_6 in sum_list_6: sum_pairs.append((s_5, s_6)) for p, (s_5, s_6) in zip(prod_list_5, sum_pairs): p.add_child(s_5) p.add_child(s_6) sum_pairs = [] for s_7 in sum_list_7: for s_8 in sum_list_8: sum_pairs.append((s_7, s_8)) for p, (s_7, s_8) in zip(prod_list_6, sum_pairs): p.add_child(s_7) p.add_child(s_8) # # linking to input layer for s in sum_list_5: for i in leaves[0:2]: s.add_child(i, 0.5) for s in sum_list_6: for i in leaves[2:4]: s.add_child(i, 0.5) for s in sum_list_7: for i in leaves[4:6]: s.add_child(i, 0.5) for s in sum_list_8: for i in leaves[6:]: s.add_child(i, 0.5) lspn = LinkedSpn(input_layer=input_layer, layers=[ sum_layer_4, product_layer_3, sum_layer_2, product_layer_1, root_layer ]) print(lspn) print(lspn.stats()) # # trying to evaluate them input_vec = numpy.array([[1., 1., 1., 0.], [0., 0., 0., 0.], [0., 1., 1., 0.], [MARG_IND, MARG_IND, MARG_IND, MARG_IND]]).T res = spn.eval(input_vec) print('First evaluation') print(res) res = lspn.eval(input_vec) print('Second evaluation') print(res)