def xstep(self, S, W, lmbda, dimK): """Solve CSC problem for training data `S`.""" if self.opt['CUDA_CBPDN']: Z = cuda.cbpdnmsk(self.D.squeeze(), S[..., 0], W.squeeze(), lmbda, self.opt['CBPDN']) Z = Z.reshape(self.cri.Nv + ( 1, 1, self.cri.M, )) self.Z[:] = np.asarray(Z, dtype=self.dtype) self.Zf = sl.rfftn(self.Z, self.cri.Nv, self.cri.axisN) self.Sf = sl.rfftn(S.reshape(self.cri.shpS), self.cri.Nv, self.cri.axisN) self.xstep_itstat = None else: # Create X update object (external representation is expected!) xstep = cbpdn.ConvBPDNMaskDcpl(self.D.squeeze(), S, lmbda, W, self.opt['CBPDN'], dimK=dimK, dimN=self.cri.dimN) xstep.solve() self.Sf = sl.rfftn(S.reshape(self.cri.shpS), self.cri.Nv, self.cri.axisN) self.setcoef(xstep.getcoef()) self.xstep_itstat = xstep.itstat[-1] if xstep.itstat else None
def test_23(self): N = 16 Nd = 5 M = 4 D = np.random.randn(Nd, Nd, M) s = np.random.randn(N, N) lmbda = 1e-1 try: b = cbpdn.ConvBPDNMaskDcpl(D, s, lmbda) b.solve() except Exception as e: print(e) assert 0
def test_27(self): N = 16 Nd = 5 K = 2 M = 4 D = np.random.randn(Nd, Nd, M) s = np.random.randn(N, N, K) dt = np.float32 opt = cbpdn.ConvBPDNMaskDcpl.Options({'Verbose' : False, 'LinSolveCheck' : True, 'MaxMainIter' : 20, 'AutoRho' : {'Enabled' : True}, 'DataType' : dt}) lmbda = 1e-1 b = cbpdn.ConvBPDNMaskDcpl(D, s, lmbda, opt=opt) b.solve() assert(b.X.dtype == dt) assert(b.Y.dtype == dt) assert(b.U.dtype == dt)
D[L,:,k,0] = (k+1)/3.0 D[:,L,k,1] = (k+1)/3.0 W = np.zeros(S.shape[0:2]) W[L:-L,L:-L] = 1.0 # Set up ConvBPDNMaskDcpl options lmbda = 1e-3 opt = cbpdn.ConvBPDNMaskDcpl.Options({'Verbose' : True, 'MaxMainIter' : 500, 'HighMemSolve' : False, 'RelStopTol' : 1e-3, 'AuxVarObj' : False, 'RelaxParam' : 1.0, 'rho' : 2e-1, 'LinSolveCheck' : True, 'AutoRho' : {'Enabled' : False, 'StdResiduals' : True}}) # Initialise and run ConvBPDNMaskDcpl object b = cbpdn.ConvBPDNMaskDcpl(D, S, lmbda, W, opt) X = b.solve() print("ConvBPDNMaskDcpl solve time: %.2fs" % b.runtime) # Reconstruct representation Sr = b.reconstruct().squeeze() print(" reconstruction PSNR: %.2fdB\n" % sm.psnr(S, Sr)) # Display representation and reconstructed image fig1 = plot.figure(1, figsize=(14,14)) plot.subplot(2,2,1) plot.imview(np.squeeze(np.sum(abs(X), axis=b.cri.axisM)), fgrf=fig1, cmap=plot.cm.Blues, title='Representation') plot.subplot(2,2,2) plot.imview(S, fgrf=fig1, cmap=plot.cm.Blues, title='Reference image')
'MaxMainIter': 200, 'HighMemSolve': True, 'RelStopTol': 3e-2, 'AuxVarObj': False, 'RelaxParam': 1.8, 'rho': 5e1 * lmbda + 1e-1, 'AutoRho': { 'Enabled': False, 'StdResiduals': False } }) """ Construct :class:`.admm.cbpdn.ConvBPDNMaskDcpl` object and solve. """ b = cbpdn.ConvBPDNMaskDcpl(D, sh, lmbda, mskp, opt=opt) X = b.solve() """ Reconstruct from representation. """ imgr = crop(sl + b.reconstruct().squeeze()) """ Display solve time and reconstruction performance. """ print("ConvBPDNMaskDcpl solve time: %.2fs" % b.timer.elapsed('solve')) print("Corrupted image PSNR: %5.2f dB" % metric.psnr(img, imgw)) print("Recovered image PSNR: %5.2f dB" % metric.psnr(img, imgr)) """ Display reference, test, and reconstructed image
def gengraphs(pth, nopyfftw): """ Generate call graph images when necessary. Parameter pth is the path to the directory in which images are to be created. Parameter nopyfftw is a flag indicating whether it is necessary to avoid using pyfftw. """ srcmodflt = '^sporco.admm' srcqnmflt = r'^((?!<locals>|__new|_name_nested).)*$' dstqnmflt = r'^((?!<locals>|__new|_name_nested).)*$' fnmsub = ('^sporco.admm.', '') grpflt = r'^[^\.]*.[^\.]*' lnksub = (r'^([^\.]*).(.*)', r'../../sporco.admm.\1.html#sporco.admm.\1.\2') fntsz = 9 fntfm = 'Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans' kwargs = {'fntsz': fntsz, 'fntfm': fntfm, 'rmsz': True} ct = jonga.CallTracer(srcmodflt=srcmodflt, srcqnmflt=srcqnmflt, dstqnmflt=dstqnmflt, fnmsub=fnmsub, grpflt=grpflt, lnksub=lnksub) # Make destination directory if it doesn't exist if not os.path.exists(pth): os.makedirs(pth, exist_ok=True) # Handle environment in which pyfftw is unavailable if nopyfftw: import numpy.fft as npfft import sporco.linalg as spl def empty(shape, dtype, order='C', n=None): return np.zeros(shape, dtype=dtype) spl.pyfftw_empty_aligned = empty def rfftn_empty(shape, axes, dtype, order='C', n=None): ashp = list(shape) raxis = axes[-1] ashp[raxis] = ashp[raxis] // 2 + 1 cdtype = spl.complex_dtype(dtype) return np.zeros(ashp, dtype=cdtype) spl.pyfftw_rfftn_empty_aligned = rfftn_empty spl.fftn = npfft.fftn spl.ifftn = npfft.ifftn spl.rfftn = npfft.rfftn spl.irfftn = npfft.irfftn import numpy as np np.random.seed(12345) #### bpdn module from sporco.admm import bpdn mdnm = 'sporco.admm.bpdn' D = np.random.randn(8, 16) s = np.random.randn(8, 1) lmbda = 0.1 ## BPDN class opt = bpdn.BPDN.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'bpdn_init.svg', **kwargs): b = bpdn.BPDN(D, s, lmbda, opt) with CallGraph(ct, mdnm, pth, 'bpdn_solve.svg', **kwargs): b.solve() ## BPDNJoint class opt = bpdn.BPDNJoint.Options({'Verbose': False, 'MaxMainIter': 1}) mu = 0.01 with CallGraph(ct, mdnm, pth, 'bpdnjnt_init.svg', **kwargs): b = bpdn.BPDNJoint(D, s, lmbda, mu, opt) with CallGraph(ct, mdnm, pth, 'bpdnjnt_solve.svg', **kwargs): b.solve() ## ElasticNet class opt = bpdn.ElasticNet.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'elnet_init.svg', **kwargs): b = bpdn.ElasticNet(D, s, lmbda, mu, opt) with CallGraph(ct, mdnm, pth, 'elnet_solve.svg', **kwargs): b.solve() # BPDNProjL1 class opt = bpdn.BPDNProjL1.Options({'Verbose': False, 'MaxMainIter': 1}) gamma = 2.0 with CallGraph(ct, mdnm, pth, 'bpdnprjl1_init.svg', **kwargs): b = bpdn.BPDNProjL1(D, s, gamma, opt) with CallGraph(ct, mdnm, pth, 'bpdnprjl1_solve.svg', **kwargs): b.solve() ## MinL1InL2Ball class opt = bpdn.MinL1InL2Ball.Options({'Verbose': False, 'MaxMainIter': 1}) epsilon = 1.0 with CallGraph(ct, mdnm, pth, 'bpdnml1l2_init.svg', **kwargs): b = bpdn.MinL1InL2Ball(D, s, epsilon, opt) with CallGraph(ct, mdnm, pth, 'bpdnml1l2_solve.svg', **kwargs): b.solve() #### cbpdn module from sporco.admm import cbpdn mdnm = 'sporco.admm.cbpdn' D = np.random.randn(4, 4, 16) s = np.random.randn(8, 8) lmbda = 0.1 ## ConvBPDN class opt = cbpdn.ConvBPDN.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'cbpdn_init.svg', **kwargs): b = cbpdn.ConvBPDN(D, s, lmbda, opt) with CallGraph(ct, mdnm, pth, 'cbpdn_solve.svg', **kwargs): b.solve() ## ConvBPDNJoint class opt = cbpdn.ConvBPDNJoint.Options({'Verbose': False, 'MaxMainIter': 1}) mu = 0.01 with CallGraph(ct, mdnm, pth, 'cbpdnjnt_init.svg', **kwargs): b = cbpdn.ConvBPDNJoint(D, s, lmbda, mu, opt) with CallGraph(ct, mdnm, pth, 'cbpdnjnt_solve.svg', **kwargs): b.solve() ## ConvElasticNet class opt = cbpdn.ConvElasticNet.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'celnet_init.svg', **kwargs): b = cbpdn.ConvElasticNet(D, s, lmbda, mu, opt) with CallGraph(ct, mdnm, pth, 'celnet_solve.svg', **kwargs): b.solve() ## ConvBPDNGradReg class opt = cbpdn.ConvBPDNGradReg.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'cbpdngrd_init.svg', **kwargs): b = cbpdn.ConvBPDNGradReg(D, s, lmbda, mu, opt) with CallGraph(ct, mdnm, pth, 'cbpdngrd_solve.svg', **kwargs): b.solve() ## ConvBPDNProjL1 class opt = cbpdn.ConvBPDNProjL1.Options({'Verbose': False, 'MaxMainIter': 1}) gamma = 0.5 with CallGraph(ct, mdnm, pth, 'cbpdnprjl1_init.svg', **kwargs): b = cbpdn.ConvBPDNProjL1(D, s, gamma, opt) with CallGraph(ct, mdnm, pth, 'cbpdnprjl1_solve.svg', **kwargs): b.solve() ## ConvMinL1InL2Ball class opt = cbpdn.ConvMinL1InL2Ball.Options({'Verbose': False, 'MaxMainIter': 1}) epsilon = 0.5 with CallGraph(ct, mdnm, pth, 'cbpdnml1l2_init.svg', **kwargs): b = cbpdn.ConvMinL1InL2Ball(D, s, epsilon, opt) with CallGraph(ct, mdnm, pth, 'cbpdnml1l2_solve.svg', **kwargs): b.solve() ## ConvBPDNMaskDcpl class opt = cbpdn.ConvBPDNMaskDcpl.Options({'Verbose': False, 'MaxMainIter': 1}) W = np.ones(s.shape) with CallGraph(ct, mdnm, pth, 'cbpdnmd_init.svg', **kwargs): b = cbpdn.ConvBPDNMaskDcpl(D, s, lmbda, W, opt) with CallGraph(ct, mdnm, pth, 'cbpdnmd_solve.svg', **kwargs): b.solve() #### cbpdntv module from sporco.admm import cbpdntv mdnm = 'sporco.admm.cbpdntv' D = np.random.randn(4, 4, 16) s = np.random.randn(8, 8) lmbda = 0.1 mu = 0.01 ## ConvBPDNScalarTV class opt = cbpdntv.ConvBPDNScalarTV.Options({ 'Verbose': False, 'MaxMainIter': 1 }) with CallGraph(ct, mdnm, pth, 'cbpdnstv_init.svg', **kwargs): b = cbpdntv.ConvBPDNScalarTV(D, s, lmbda, mu, opt) with CallGraph(ct, mdnm, pth, 'cbpdnstv_solve.svg', **kwargs): b.solve() ## ConvBPDNVectorTV class opt = cbpdntv.ConvBPDNVectorTV.Options({ 'Verbose': False, 'MaxMainIter': 1 }) with CallGraph(ct, mdnm, pth, 'cbpdnvtv_init.svg', **kwargs): b = cbpdntv.ConvBPDNVectorTV(D, s, lmbda, mu, opt) with CallGraph(ct, mdnm, pth, 'cbpdnvtv_solve.svg', **kwargs): b.solve() ## ConvBPDNRecTV class opt = cbpdntv.ConvBPDNRecTV.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'cbpdnrtv_init.svg', **kwargs): b = cbpdntv.ConvBPDNRecTV(D, s, lmbda, mu, opt) with CallGraph(ct, mdnm, pth, 'cbpdnrtv_solve.svg', **kwargs): b.solve() #### cmod module from sporco.admm import cmod mdnm = 'sporco.admm.cmod' X = np.random.randn(8, 16) S = np.random.randn(8, 16) ## CnstrMOD class opt = cmod.CnstrMOD.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'cmod_init.svg', **kwargs): b = cmod.CnstrMOD(X, S, opt=opt) with CallGraph(ct, mdnm, pth, 'cmod_solve.svg', **kwargs): b.solve() #### ccmod module from sporco.admm import ccmod mdnm = 'sporco.admm.ccmod' X = np.random.randn(8, 8, 1, 2, 1) S = np.random.randn(8, 8, 2) dsz = (4, 4, 1) ## ConvCnstrMOD_IterSM class opt = ccmod.ConvCnstrMOD_IterSM.Options({ 'Verbose': False, 'MaxMainIter': 1 }) with CallGraph(ct, mdnm, pth, 'ccmodism_init.svg', **kwargs): b = ccmod.ConvCnstrMOD_IterSM(X, S, dsz=dsz, opt=opt) with CallGraph(ct, mdnm, pth, 'ccmodism_solve.svg', **kwargs): b.solve() ## ConvCnstrMOD_CG class opt = ccmod.ConvCnstrMOD_CG.Options({ 'Verbose': False, 'MaxMainIter': 1, 'CG': { 'MaxIter': 1 } }) with CallGraph(ct, mdnm, pth, 'ccmodcg_init.svg', **kwargs): b = ccmod.ConvCnstrMOD_CG(X, S, dsz=dsz, opt=opt) with CallGraph(ct, mdnm, pth, 'ccmodcg_solve.svg', **kwargs): b.solve() ## ConvCnstrMOD_Consensus class opt = ccmod.ConvCnstrMOD_Consensus.Options({ 'Verbose': False, 'MaxMainIter': 1 }) with CallGraph(ct, mdnm, pth, 'ccmodcnsns_init.svg', **kwargs): b = ccmod.ConvCnstrMOD_Consensus(X, S, dsz=dsz, opt=opt) with CallGraph(ct, mdnm, pth, 'ccmodcnsns_solve.svg', **kwargs): b.solve() #### ccmodmd module from sporco.admm import ccmodmd mdnm = 'sporco.admm.ccmodmd' X = np.random.randn(8, 8, 1, 2, 1) S = np.random.randn(8, 8, 2) W = np.array([1.0]) dsz = (4, 4, 1) ## ConvCnstrMODMaskDcpl_IterSM class opt = ccmodmd.ConvCnstrMODMaskDcpl_IterSM.Options({ 'Verbose': False, 'MaxMainIter': 1 }) with CallGraph(ct, mdnm, pth, 'ccmodmdism_init.svg', **kwargs): b = ccmodmd.ConvCnstrMODMaskDcpl_IterSM(X, S, W, dsz=dsz, opt=opt) with CallGraph(ct, mdnm, pth, 'ccmodmdism_solve.svg', **kwargs): b.solve() ## ConvCnstrMODMaskDcpl_CG class opt = ccmodmd.ConvCnstrMODMaskDcpl_CG.Options({ 'Verbose': False, 'MaxMainIter': 1, 'CG': { 'MaxIter': 1 } }) with CallGraph(ct, mdnm, pth, 'ccmodmdcg_init.svg', **kwargs): b = ccmodmd.ConvCnstrMODMaskDcpl_CG(X, S, W, dsz=dsz, opt=opt) with CallGraph(ct, mdnm, pth, 'ccmodmdcg_solve.svg', **kwargs): b.solve() ## ConvCnstrMODMaskDcpl_Consensus class opt = ccmodmd.ConvCnstrMODMaskDcpl_Consensus.Options({ 'Verbose': False, 'MaxMainIter': 1 }) with CallGraph(ct, mdnm, pth, 'ccmodmdcnsns_init.svg', **kwargs): b = ccmodmd.ConvCnstrMODMaskDcpl_Consensus(X, S, W, dsz=dsz, opt=opt) with CallGraph(ct, mdnm, pth, 'ccmodmdcnsns_solve.svg', **kwargs): b.solve() #### bpdndl module from sporco.admm import bpdndl mdnm = 'sporco.admm.bpdndl' D0 = np.random.randn(8, 8) S = np.random.randn(8, 16) lmbda = 0.1 ## BPDNDictLearn class opt = bpdndl.BPDNDictLearn.Options({ 'Verbose': False, 'MaxMainIter': 1, 'AccurateDFid': True }) with CallGraph(ct, mdnm, pth, 'bpdndl_init.svg', **kwargs): b = bpdndl.BPDNDictLearn(D0, S, lmbda, opt) with CallGraph(ct, mdnm, pth, 'bpdndl_solve.svg', **kwargs): b.solve() #### cbpdndl module from sporco.admm import cbpdndl mdnm = 'sporco.admm.cbpdndl' D0 = np.random.randn(4, 4, 16) s = np.random.randn(8, 8, 10) lmbda = 0.1 ## ConvBPDNDictLearn class opt = cbpdndl.ConvBPDNDictLearn.Options({ 'Verbose': False, 'MaxMainIter': 1, 'AccurateDFid': True }) with CallGraph(ct, mdnm, pth, 'cbpdndl_init.svg', **kwargs): b = cbpdndl.ConvBPDNDictLearn(D0, s, lmbda, opt) with CallGraph(ct, mdnm, pth, 'cbpdndl_solve.svg', **kwargs): b.solve() ## ConvBPDNMaskDcplDictLearn class W = np.array([1.0]) opt = cbpdndl.ConvBPDNMaskDcplDictLearn.Options({ 'Verbose': False, 'MaxMainIter': 1, 'AccurateDFid': True }) with CallGraph(ct, mdnm, pth, 'cbpdnmddl_init.svg', **kwargs): b = cbpdndl.ConvBPDNMaskDcplDictLearn(D0, s, lmbda, W, opt) with CallGraph(ct, mdnm, pth, 'cbpdnmddl_solve.svg', **kwargs): b.solve() #### tvl1 module from sporco.admm import tvl1 mdnm = 'sporco.admm.tvl1' s = np.random.randn(16, 16) lmbda = 0.1 ## TVL1Denoise class opt = tvl1.TVL1Denoise.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'tvl1den_init.svg', **kwargs): b = tvl1.TVL1Denoise(s, lmbda, opt) with CallGraph(ct, mdnm, pth, 'tvl1den_solve.svg', **kwargs): b.solve() ## TVL1Deconv class opt = tvl1.TVL1Deconv.Options({'Verbose': False, 'MaxMainIter': 1}) h = np.random.randn(3, 3) with CallGraph(ct, mdnm, pth, 'tvl1dcn_init.svg', **kwargs): b = tvl1.TVL1Deconv(h, s, lmbda, opt) with CallGraph(ct, mdnm, pth, 'tvl1dcn_solve.svg', **kwargs): b.solve() #### tvl2 module from sporco.admm import tvl2 mdnm = 'sporco.admm.tvl2' s = np.random.randn(16, 16) lmbda = 0.1 ## TVL2Denoise class opt = tvl2.TVL2Denoise.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'tvl2den_init.svg', **kwargs): b = tvl2.TVL2Denoise(s, lmbda, opt) with CallGraph(ct, mdnm, pth, 'tvl2den_solve.svg', **kwargs): b.solve() ## TVL2Deconv class opt = tvl2.TVL2Deconv.Options({'Verbose': False, 'MaxMainIter': 1}) h = np.random.randn(3, 3) with CallGraph(ct, mdnm, pth, 'tvl2dcn_init.svg', **kwargs): b = tvl2.TVL2Deconv(h, s, lmbda, opt) with CallGraph(ct, mdnm, pth, 'tvl2dcn_solve.svg', **kwargs): b.solve() srcmodflt = '^sporco.fista' fnmsub = ('^sporco.fista.', '') lnksub = (r'^([^\.]*).(.*)', r'../../sporco.fista.\1.html#sporco.fista.\1.\2') ct = jonga.CallTracer(srcmodflt=srcmodflt, srcqnmflt=srcqnmflt, dstqnmflt=dstqnmflt, fnmsub=fnmsub, grpflt=grpflt, lnksub=lnksub) #### fista.cbpdn module from sporco.fista import cbpdn mdnm = 'sporco.fista.cbpdn' D = np.random.randn(4, 4, 16) s = np.random.randn(8, 8) lmbda = 0.1 ## ConvBPDN class opt = cbpdn.ConvBPDN.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'fista_cbpdn_init.svg', **kwargs): b = cbpdn.ConvBPDN(D, s, lmbda, opt) with CallGraph(ct, mdnm, pth, 'fista_cbpdn_solve.svg', **kwargs): b.solve() #### fista.ccmod module from sporco.fista import ccmod mdnm = 'sporco.fista.ccmod' X = np.random.randn(8, 8, 1, 2, 1) S = np.random.randn(8, 8, 2) dsz = (4, 4, 1) ## ConvCnstrMOD class opt = ccmod.ConvCnstrMOD.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'ccmodfista_init.svg', **kwargs): b = ccmod.ConvCnstrMOD(X, S, dsz=dsz, opt=opt) with CallGraph(ct, mdnm, pth, 'ccmodfista_solve.svg', **kwargs): b.solve() ## ConvCnstrMODMaskDcpl class opt = ccmod.ConvCnstrMODMask.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'ccmodmdfista_init.svg', **kwargs): b = ccmod.ConvCnstrMODMask(X, S, W, dsz=dsz, opt=opt) with CallGraph(ct, mdnm, pth, 'ccmodmdfista_solve.svg', **kwargs): b.solve()
'AutoRho': { 'Enabled': False, } }) # Normalise dictionary according to Y update options D0n = ccmod.getPcn0(optd['ZeroMean'], D0.shape, dimN=2, dimC=0)(D0) # Update D update options to include initial values for Y and U optd.update({ 'Y0': ccmod.zpad(ccmod.stdformD(D0n, cri.C, cri.M), cri.Nv), 'U0': np.zeros(cri.shpD) }) # Create X update object xstep = cbpdn.ConvBPDNMaskDcpl(D0n, shp, lmbda, W, optx) # Create D update object dstep = ccmod.ConvCnstrMOD(None, shp, D0.shape, optd) # Create DictLearn object opt = dictlrn.DictLearn.Options({'Verbose': True, 'MaxMainIter': 100}) d = dictlrn.DictLearn(xstep, dstep, opt) D1 = d.solve() print("DictLearn solve time: %.2fs" % d.runtime, "\n") # Display dictionaries D1 = D1.squeeze() fig1 = plot.figure(1, figsize=(14, 7)) plot.subplot(1, 2, 1) plot.imview(util.tiledict(D0), fgrf=fig1, title='D0')
def __init__(self, D0, S, lmbda, W, opt=None, dimK=1, dimN=2): """ Initialise a MixConvBPDNMaskDcplDictLearn object with problem size and options. Parameters ---------- D0 : array_like Initial dictionary array S : array_like Signal array lmbda : float Regularisation parameter W : array_like Mask array. The array shape must be such that the array is compatible for multiplication with the *internal* shape of input array S (see :class:`.cnvrep.CDU_ConvRepIndexing` for a discussion of the distinction between *external* and *internal* data layouts). opt : :class:`MixConvBPDNMaskDcplDictLearn.Options` object Algorithm options dimK : int, optional (default 1) Number of signal dimensions. If there is only a single input signal (e.g. if `S` is a 2D array representing a single image) `dimK` must be set to 0. dimN : int, optional (default 2) Number of spatial/temporal dimensions """ if opt is None: opt = MixConvBPDNMaskDcplDictLearn.Options() self.opt = opt # Get dictionary size if self.opt['DictSize'] is None: dsz = D0.shape else: dsz = self.opt['DictSize'] # Construct object representing problem dimensions cri = cr.CDU_ConvRepIndexing(dsz, S, dimK, dimN) # Normalise dictionary D0 = cr.Pcn(D0, dsz, cri.Nv, dimN, cri.dimCd, crp=True, zm=opt['CCMOD', 'ZeroMean']) # Modify D update options to include initial values for X X0 = cr.zpad(cr.stdformD(D0, cri.Cd, cri.M, dimN), cri.Nv) opt['CCMOD'].update({'X0': X0}) # Create X update object xstep = Acbpdn.ConvBPDNMaskDcpl(D0, S, lmbda, W, opt['CBPDN'], dimK=dimK, dimN=dimN) # Create D update object dstep = ccmod.ConvCnstrMODMask(None, S, W, dsz, opt['CCMOD'], dimK=dimK, dimN=dimN) # Configure iteration statistics reporting if self.opt['AccurateDFid']: isxmap = { 'XPrRsdl': 'PrimalRsdl', 'XDlRsdl': 'DualRsdl', 'XRho': 'Rho' } evlmap = {'ObjFun': 'ObjFun', 'DFid': 'DFid', 'RegL1': 'RegL1'} else: isxmap = { 'ObjFun': 'ObjFun', 'DFid': 'DFid', 'RegL1': 'RegL1', 'XPrRsdl': 'PrimalRsdl', 'XDlRsdl': 'DualRsdl', 'XRho': 'Rho' } evlmap = {} if dstep.opt['BackTrack', 'Enabled']: isfld = [ 'Iter', 'ObjFun', 'DFid', 'RegL1', 'Cnstr', 'XPrRsdl', 'XDlRsdl', 'XRho', 'D_F_Btrack', 'D_Q_Btrack', 'D_ItBt', 'D_L', 'Time' ] isdmap = { 'Cnstr': 'Cnstr', 'D_F_Btrack': 'F_Btrack', 'D_Q_Btrack': 'Q_Btrack', 'D_ItBt': 'IterBTrack', 'D_L': 'L' } hdrtxt = [ 'Itn', 'Fnc', 'DFid', u('ℓ1'), 'Cnstr', 'r_X', 's_X', u('ρ_X'), 'F_D', 'Q_D', 'It_D', 'L_D' ] hdrmap = { 'Itn': 'Iter', 'Fnc': 'ObjFun', 'DFid': 'DFid', u('ℓ1'): 'RegL1', 'Cnstr': 'Cnstr', 'r_X': 'XPrRsdl', 's_X': 'XDlRsdl', u('ρ_X'): 'XRho', 'F_D': 'D_F_Btrack', 'Q_D': 'D_Q_Btrack', 'It_D': 'D_ItBt', 'L_D': 'D_L' } else: isfld = [ 'Iter', 'ObjFun', 'DFid', 'RegL1', 'Cnstr', 'XPrRsdl', 'XDlRsdl', 'XRho', 'D_L', 'Time' ] isdmap = {'Cnstr': 'Cnstr', 'D_L': 'L'} hdrtxt = [ 'Itn', 'Fnc', 'DFid', u('ℓ1'), 'Cnstr', 'r_X', 's_X', u('ρ_X'), 'L_D' ] hdrmap = { 'Itn': 'Iter', 'Fnc': 'ObjFun', 'DFid': 'DFid', u('ℓ1'): 'RegL1', 'Cnstr': 'Cnstr', 'r_X': 'XPrRsdl', 's_X': 'XDlRsdl', u('ρ_X'): 'XRho', 'L_D': 'D_L' } isc = dictlrn.IterStatsConfig(isfld=isfld, isxmap=isxmap, isdmap=isdmap, evlmap=evlmap, hdrtxt=hdrtxt, hdrmap=hdrmap) # Call parent constructor super(MixConvBPDNMaskDcplDictLearn, self).__init__(xstep, dstep, opt, isc)
def __init__(self, D0, S, lmbda, W, opt=None, method='cns', dimK=1, dimN=2): """ Initialise a ConvBPDNMaskDcplDictLearn object with problem size and options. | **Call graph** .. image:: _static/jonga/cbpdnmddl_init.svg :width: 20% :target: _static/jonga/cbpdnmddl_init.svg | Parameters ---------- D0 : array_like Initial dictionary array S : array_like Signal array lmbda : float Regularisation parameter W : array_like Mask array. The array shape must be such that the array is compatible for multiplication with the *internal* shape of input array S (see :class:`.cnvrep.CDU_ConvRepIndexing` for a discussion of the distinction between *external* and *internal* data layouts). opt : :class:`ConvBPDNMaskDcplDictLearn.Options` object Algorithm options method : string, optional (default 'cns') String selecting dictionary update solver. Valid values are documented in function :func:`.ConvCnstrMODMaskDcpl`. dimK : int, optional (default 1) Number of signal dimensions. If there is only a single input signal (e.g. if `S` is a 2D array representing a single image) `dimK` must be set to 0. dimN : int, optional (default 2) Number of spatial/temporal dimensions """ if opt is None: opt = ConvBPDNMaskDcplDictLearn.Options(method=method) self.opt = opt # Get dictionary size if self.opt['DictSize'] is None: dsz = D0.shape else: dsz = self.opt['DictSize'] # Construct object representing problem dimensions cri = cr.CDU_ConvRepIndexing(dsz, S, dimK, dimN) # Normalise dictionary D0 = cr.Pcn(D0, dsz, cri.Nv, dimN, cri.dimCd, crp=True, zm=opt['CCMOD', 'ZeroMean']) # Modify D update options to include initial values for Y and U if cri.C == cri.Cd: Y0b0 = np.zeros(cri.Nv + (cri.C, 1, cri.K)) else: Y0b0 = np.zeros(cri.Nv + (1, 1, cri.C * cri.K)) Y0b1 = cr.zpad(cr.stdformD(D0, cri.Cd, cri.M, dimN), cri.Nv) if method == 'cns': Y0 = Y0b1 else: Y0 = np.concatenate((Y0b0, Y0b1), axis=cri.axisM) opt['CCMOD'].update({'Y0': Y0}) # Create X update object xstep = cbpdn.ConvBPDNMaskDcpl(D0, S, lmbda, W, opt['CBPDN'], dimK=dimK, dimN=dimN) # Create D update object dstep = ccmodmd.ConvCnstrMODMaskDcpl(None, S, W, dsz, opt['CCMOD'], method=method, dimK=dimK, dimN=dimN) # Configure iteration statistics reporting if self.opt['AccurateDFid']: isxmap = { 'XPrRsdl': 'PrimalRsdl', 'XDlRsdl': 'DualRsdl', 'XRho': 'Rho' } evlmap = {'ObjFun': 'ObjFun', 'DFid': 'DFid', 'RegL1': 'RegL1'} else: isxmap = { 'ObjFun': 'ObjFun', 'DFid': 'DFid', 'RegL1': 'RegL1', 'XPrRsdl': 'PrimalRsdl', 'XDlRsdl': 'DualRsdl', 'XRho': 'Rho' } evlmap = {} isc = dictlrn.IterStatsConfig(isfld=[ 'Iter', 'ObjFun', 'DFid', 'RegL1', 'Cnstr', 'XPrRsdl', 'XDlRsdl', 'XRho', 'DPrRsdl', 'DDlRsdl', 'DRho', 'Time' ], isxmap=isxmap, isdmap={ 'Cnstr': 'Cnstr', 'DPrRsdl': 'PrimalRsdl', 'DDlRsdl': 'DualRsdl', 'DRho': 'Rho' }, evlmap=evlmap, hdrtxt=[ 'Itn', 'Fnc', 'DFid', u('ℓ1'), 'Cnstr', 'r_X', 's_X', u('ρ_X'), 'r_D', 's_D', u('ρ_D') ], hdrmap={ 'Itn': 'Iter', 'Fnc': 'ObjFun', 'DFid': 'DFid', u('ℓ1'): 'RegL1', 'Cnstr': 'Cnstr', 'r_X': 'XPrRsdl', 's_X': 'XDlRsdl', u('ρ_X'): 'XRho', 'r_D': 'DPrRsdl', 's_D': 'DDlRsdl', u('ρ_D'): 'DRho' }) # Call parent constructor super(ConvBPDNMaskDcplDictLearn, self).__init__(xstep, dstep, opt, isc)
def gengraphs(pth): """ Generate call graph images when necessary. Parameter pth is the path to the directory in which images are to be created. """ srcmodflt = '^sporco.admm' srcqnmflt = r'^((?!<locals>|__new|_name_nested).)*$' dstqnmflt = r'^((?!<locals>|__new|_name_nested).)*$' fnmsub = ('^sporco.admm.', '') grpflt = r'^[^\.]*.[^\.]*' lnkpfx = '../../modules/' lnksub = (r'^([^\.]*).([^\.]*)(?:(.__init__|.__call__)|(.[^\.]*))', lnkpfx + r'sporco.admm.\1.html#sporco.admm.\1.\2\4') fntsz = 9 fntfm = 'Vera Sans, DejaVu Sans, Liberation Sans, Arial, Helvetica, sans' kwargs = {'fntsz': fntsz, 'fntfm': fntfm, 'rmsz': True} ct = jonga.CallTracer(srcmodflt=srcmodflt, srcqnmflt=srcqnmflt, dstqnmflt=dstqnmflt, fnmsub=fnmsub, grpflt=grpflt, lnksub=lnksub) # Make destination directory if it doesn't exist if not os.path.exists(pth): os.makedirs(pth, exist_ok=True) import numpy as np np.random.seed(12345) #### bpdn module from sporco.admm import bpdn mdnm = 'sporco.admm.bpdn' D = np.random.randn(8, 16) s = np.random.randn(8, 1) lmbda = 0.1 ## BPDN class opt = bpdn.BPDN.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'bpdn_init.svg', **kwargs): b = bpdn.BPDN(D, s, lmbda, opt) with CallGraph(ct, mdnm, pth, 'bpdn_solve.svg', **kwargs): b.solve() ## BPDNJoint class opt = bpdn.BPDNJoint.Options({'Verbose': False, 'MaxMainIter': 1}) mu = 0.01 with CallGraph(ct, mdnm, pth, 'bpdnjnt_init.svg', **kwargs): b = bpdn.BPDNJoint(D, s, lmbda, mu, opt) with CallGraph(ct, mdnm, pth, 'bpdnjnt_solve.svg', **kwargs): b.solve() ## ElasticNet class opt = bpdn.ElasticNet.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'elnet_init.svg', **kwargs): b = bpdn.ElasticNet(D, s, lmbda, mu, opt) with CallGraph(ct, mdnm, pth, 'elnet_solve.svg', **kwargs): b.solve() # BPDNProjL1 class opt = bpdn.BPDNProjL1.Options({'Verbose': False, 'MaxMainIter': 1}) gamma = 2.0 with CallGraph(ct, mdnm, pth, 'bpdnprjl1_init.svg', **kwargs): b = bpdn.BPDNProjL1(D, s, gamma, opt) with CallGraph(ct, mdnm, pth, 'bpdnprjl1_solve.svg', **kwargs): b.solve() ## MinL1InL2Ball class opt = bpdn.MinL1InL2Ball.Options({'Verbose': False, 'MaxMainIter': 1}) epsilon = 1.0 with CallGraph(ct, mdnm, pth, 'bpdnml1l2_init.svg', **kwargs): b = bpdn.MinL1InL2Ball(D, s, epsilon, opt) with CallGraph(ct, mdnm, pth, 'bpdnml1l2_solve.svg', **kwargs): b.solve() #### cbpdn module from sporco.admm import cbpdn mdnm = 'sporco.admm.cbpdn' D = np.random.randn(4, 4, 16) s = np.random.randn(8, 8) lmbda = 0.1 ## ConvBPDN class opt = cbpdn.ConvBPDN.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'cbpdn_init.svg', **kwargs): b = cbpdn.ConvBPDN(D, s, lmbda, opt) with CallGraph(ct, mdnm, pth, 'cbpdn_solve.svg', **kwargs): b.solve() ## ConvBPDNJoint class opt = cbpdn.ConvBPDNJoint.Options({'Verbose': False, 'MaxMainIter': 1}) mu = 0.01 with CallGraph(ct, mdnm, pth, 'cbpdnjnt_init.svg', **kwargs): b = cbpdn.ConvBPDNJoint(D, s, lmbda, mu, opt) with CallGraph(ct, mdnm, pth, 'cbpdnjnt_solve.svg', **kwargs): b.solve() ## ConvElasticNet class opt = cbpdn.ConvElasticNet.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'celnet_init.svg', **kwargs): b = cbpdn.ConvElasticNet(D, s, lmbda, mu, opt) with CallGraph(ct, mdnm, pth, 'celnet_solve.svg', **kwargs): b.solve() ## ConvBPDNGradReg class opt = cbpdn.ConvBPDNGradReg.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'cbpdngrd_init.svg', **kwargs): b = cbpdn.ConvBPDNGradReg(D, s, lmbda, mu, opt) with CallGraph(ct, mdnm, pth, 'cbpdngrd_solve.svg', **kwargs): b.solve() ## ConvBPDNProjL1 class opt = cbpdn.ConvBPDNProjL1.Options({'Verbose': False, 'MaxMainIter': 1}) gamma = 0.5 with CallGraph(ct, mdnm, pth, 'cbpdnprjl1_init.svg', **kwargs): b = cbpdn.ConvBPDNProjL1(D, s, gamma, opt) with CallGraph(ct, mdnm, pth, 'cbpdnprjl1_solve.svg', **kwargs): b.solve() ## ConvMinL1InL2Ball class opt = cbpdn.ConvMinL1InL2Ball.Options({'Verbose': False, 'MaxMainIter': 1}) epsilon = 0.5 with CallGraph(ct, mdnm, pth, 'cbpdnml1l2_init.svg', **kwargs): b = cbpdn.ConvMinL1InL2Ball(D, s, epsilon, opt) with CallGraph(ct, mdnm, pth, 'cbpdnml1l2_solve.svg', **kwargs): b.solve() ## ConvBPDNMaskDcpl class opt = cbpdn.ConvBPDNMaskDcpl.Options({'Verbose': False, 'MaxMainIter': 1}) W = np.ones(s.shape) with CallGraph(ct, mdnm, pth, 'cbpdnmd_init.svg', **kwargs): b = cbpdn.ConvBPDNMaskDcpl(D, s, lmbda, W, opt) with CallGraph(ct, mdnm, pth, 'cbpdnmd_solve.svg', **kwargs): b.solve() ## ConvL1L1Grd class opt = cbpdn.ConvL1L1Grd.Options({'Verbose': False, 'MaxMainIter': 1}) mu = 1e-2 with CallGraph(ct, mdnm, pth, 'cl1l1grd_init.svg', **kwargs): b = cbpdn.ConvL1L1Grd(D, s, lmbda, mu, W, opt) with CallGraph(ct, mdnm, pth, 'cl1l1grd_solve.svg', **kwargs): b.solve() #### cbpdntv module from sporco.admm import cbpdntv mdnm = 'sporco.admm.cbpdntv' D = np.random.randn(4, 4, 16) s = np.random.randn(8, 8) lmbda = 0.1 mu = 0.01 ## ConvBPDNScalarTV class opt = cbpdntv.ConvBPDNScalarTV.Options({ 'Verbose': False, 'MaxMainIter': 1 }) with CallGraph(ct, mdnm, pth, 'cbpdnstv_init.svg', **kwargs): b = cbpdntv.ConvBPDNScalarTV(D, s, lmbda, mu, opt) with CallGraph(ct, mdnm, pth, 'cbpdnstv_solve.svg', **kwargs): b.solve() ## ConvBPDNVectorTV class opt = cbpdntv.ConvBPDNVectorTV.Options({ 'Verbose': False, 'MaxMainIter': 1 }) with CallGraph(ct, mdnm, pth, 'cbpdnvtv_init.svg', **kwargs): b = cbpdntv.ConvBPDNVectorTV(D, s, lmbda, mu, opt) with CallGraph(ct, mdnm, pth, 'cbpdnvtv_solve.svg', **kwargs): b.solve() ## ConvBPDNRecTV class opt = cbpdntv.ConvBPDNRecTV.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'cbpdnrtv_init.svg', **kwargs): b = cbpdntv.ConvBPDNRecTV(D, s, lmbda, mu, opt) with CallGraph(ct, mdnm, pth, 'cbpdnrtv_solve.svg', **kwargs): b.solve() #### cbpdnin module from sporco.admm import cbpdnin mdnm = 'sporco.admm.cbpdnin' D = np.random.randn(4, 4, 32) s = np.random.randn(8, 8) lmbda = 0.1 mu = 0.01 Wg = np.append(np.eye(16), np.eye(16), axis=-1) ## ConvBPDNInhib class opt = cbpdnin.ConvBPDNInhib.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'cbpdnin_init.svg', **kwargs): b = cbpdnin.ConvBPDNInhib(D, s, Wg, Whn=4, lmbda=lmbda, mu=mu, gamma=None, opt=opt) with CallGraph(ct, mdnm, pth, 'cbpdnin_solve.svg', **kwargs): b.solve() #### cmod module from sporco.admm import cmod mdnm = 'sporco.admm.cmod' X = np.random.randn(8, 16) S = np.random.randn(8, 16) ## CnstrMOD class opt = cmod.CnstrMOD.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'cmod_init.svg', **kwargs): b = cmod.CnstrMOD(X, S, opt=opt) with CallGraph(ct, mdnm, pth, 'cmod_solve.svg', **kwargs): b.solve() #### ccmod module from sporco.admm import ccmod mdnm = 'sporco.admm.ccmod' X = np.random.randn(8, 8, 1, 2, 1) S = np.random.randn(8, 8, 2) dsz = (4, 4, 1) ## ConvCnstrMOD_IterSM class opt = ccmod.ConvCnstrMOD_IterSM.Options({ 'Verbose': False, 'MaxMainIter': 1 }) with CallGraph(ct, mdnm, pth, 'ccmodism_init.svg', **kwargs): b = ccmod.ConvCnstrMOD_IterSM(X, S, dsz=dsz, opt=opt) with CallGraph(ct, mdnm, pth, 'ccmodism_solve.svg', **kwargs): b.solve() ## ConvCnstrMOD_CG class opt = ccmod.ConvCnstrMOD_CG.Options({ 'Verbose': False, 'MaxMainIter': 1, 'CG': { 'MaxIter': 1 } }) with CallGraph(ct, mdnm, pth, 'ccmodcg_init.svg', **kwargs): b = ccmod.ConvCnstrMOD_CG(X, S, dsz=dsz, opt=opt) with CallGraph(ct, mdnm, pth, 'ccmodcg_solve.svg', **kwargs): b.solve() ## ConvCnstrMOD_Consensus class opt = ccmod.ConvCnstrMOD_Consensus.Options({ 'Verbose': False, 'MaxMainIter': 1 }) with CallGraph(ct, mdnm, pth, 'ccmodcnsns_init.svg', **kwargs): b = ccmod.ConvCnstrMOD_Consensus(X, S, dsz=dsz, opt=opt) with CallGraph(ct, mdnm, pth, 'ccmodcnsns_solve.svg', **kwargs): b.solve() #### ccmodmd module from sporco.admm import ccmodmd mdnm = 'sporco.admm.ccmodmd' X = np.random.randn(8, 8, 1, 2, 1) S = np.random.randn(8, 8, 2) W = np.array([1.0]) dsz = (4, 4, 1) ## ConvCnstrMODMaskDcpl_IterSM class opt = ccmodmd.ConvCnstrMODMaskDcpl_IterSM.Options({ 'Verbose': False, 'MaxMainIter': 1 }) with CallGraph(ct, mdnm, pth, 'ccmodmdism_init.svg', **kwargs): b = ccmodmd.ConvCnstrMODMaskDcpl_IterSM(X, S, W, dsz=dsz, opt=opt) with CallGraph(ct, mdnm, pth, 'ccmodmdism_solve.svg', **kwargs): b.solve() ## ConvCnstrMODMaskDcpl_CG class opt = ccmodmd.ConvCnstrMODMaskDcpl_CG.Options({ 'Verbose': False, 'MaxMainIter': 1, 'CG': { 'MaxIter': 1 } }) with CallGraph(ct, mdnm, pth, 'ccmodmdcg_init.svg', **kwargs): b = ccmodmd.ConvCnstrMODMaskDcpl_CG(X, S, W, dsz=dsz, opt=opt) with CallGraph(ct, mdnm, pth, 'ccmodmdcg_solve.svg', **kwargs): b.solve() ## ConvCnstrMODMaskDcpl_Consensus class opt = ccmodmd.ConvCnstrMODMaskDcpl_Consensus.Options({ 'Verbose': False, 'MaxMainIter': 1 }) with CallGraph(ct, mdnm, pth, 'ccmodmdcnsns_init.svg', **kwargs): b = ccmodmd.ConvCnstrMODMaskDcpl_Consensus(X, S, W, dsz=dsz, opt=opt) with CallGraph(ct, mdnm, pth, 'ccmodmdcnsns_solve.svg', **kwargs): b.solve() #### tvl1 module from sporco.admm import tvl1 mdnm = 'sporco.admm.tvl1' s = np.random.randn(16, 16) lmbda = 0.1 ## TVL1Denoise class opt = tvl1.TVL1Denoise.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'tvl1den_init.svg', **kwargs): b = tvl1.TVL1Denoise(s, lmbda, opt) with CallGraph(ct, mdnm, pth, 'tvl1den_solve.svg', **kwargs): b.solve() ## TVL1Deconv class opt = tvl1.TVL1Deconv.Options({'Verbose': False, 'MaxMainIter': 1}) h = np.random.randn(3, 3) with CallGraph(ct, mdnm, pth, 'tvl1dcn_init.svg', **kwargs): b = tvl1.TVL1Deconv(h, s, lmbda, opt) with CallGraph(ct, mdnm, pth, 'tvl1dcn_solve.svg', **kwargs): b.solve() #### tvl2 module from sporco.admm import tvl2 mdnm = 'sporco.admm.tvl2' s = np.random.randn(16, 16) lmbda = 0.1 ## TVL2Denoise class opt = tvl2.TVL2Denoise.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'tvl2den_init.svg', **kwargs): b = tvl2.TVL2Denoise(s, lmbda, opt) with CallGraph(ct, mdnm, pth, 'tvl2den_solve.svg', **kwargs): b.solve() ## TVL2Deconv class opt = tvl2.TVL2Deconv.Options({'Verbose': False, 'MaxMainIter': 1}) h = np.random.randn(3, 3) with CallGraph(ct, mdnm, pth, 'tvl2dcn_init.svg', **kwargs): b = tvl2.TVL2Deconv(h, s, lmbda, opt) with CallGraph(ct, mdnm, pth, 'tvl2dcn_solve.svg', **kwargs): b.solve() srcmodflt = '^sporco.fista' fnmsub = ('^sporco.fista.', '') lnksub = (r'^([^\.]*).([^\.]*)(?:(.__init__|.__call__)|(.[^\.]*))', lnkpfx + r'sporco.fista.\1.html#sporco.fista.\1.\2\4') ct = jonga.CallTracer(srcmodflt=srcmodflt, srcqnmflt=srcqnmflt, dstqnmflt=dstqnmflt, fnmsub=fnmsub, grpflt=grpflt, lnksub=lnksub) #### fista.cbpdn module from sporco.fista import cbpdn mdnm = 'sporco.fista.cbpdn' D = np.random.randn(4, 4, 16) s = np.random.randn(8, 8) lmbda = 0.1 ## ConvBPDN class opt = cbpdn.ConvBPDN.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'fista_cbpdn_init.svg', **kwargs): b = cbpdn.ConvBPDN(D, s, lmbda, opt) with CallGraph(ct, mdnm, pth, 'fista_cbpdn_solve.svg', **kwargs): b.solve() #### fista.ccmod module from sporco.fista import ccmod mdnm = 'sporco.fista.ccmod' X = np.random.randn(8, 8, 1, 2, 1) S = np.random.randn(8, 8, 2) dsz = (4, 4, 1) ## ConvCnstrMOD class opt = ccmod.ConvCnstrMOD.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'ccmodfista_init.svg', **kwargs): b = ccmod.ConvCnstrMOD(X, S, dsz=dsz, opt=opt) with CallGraph(ct, mdnm, pth, 'ccmodfista_solve.svg', **kwargs): b.solve() ## ConvCnstrMODMask class opt = ccmod.ConvCnstrMODMask.Options({'Verbose': False, 'MaxMainIter': 1}) with CallGraph(ct, mdnm, pth, 'ccmodmdfista_init.svg', **kwargs): b = ccmod.ConvCnstrMODMask(X, S, W, dsz=dsz, opt=opt) with CallGraph(ct, mdnm, pth, 'ccmodmdfista_solve.svg', **kwargs): b.solve() srcmodflt = '^sporco.dictlrn' fnmsub = ('^sporco.dictlrn.', '') lnksub = (r'^([^\.]*).([^\.]*)(?:(.__init__|.__call__)|(.[^\.]*))', lnkpfx + r'sporco.dictlrn.\1.html#sporco.dictlrn.\1.\2\4') ct = jonga.CallTracer(srcmodflt=srcmodflt, srcqnmflt=srcqnmflt, dstqnmflt=dstqnmflt, fnmsub=fnmsub, grpflt=grpflt, lnksub=lnksub) #### bpdndl module from sporco.dictlrn import bpdndl mdnm = 'sporco.dictlrn.bpdndl' D0 = np.random.randn(8, 8) S = np.random.randn(8, 16) lmbda = 0.1 ## BPDNDictLearn class opt = bpdndl.BPDNDictLearn.Options({ 'Verbose': False, 'MaxMainIter': 1, 'AccurateDFid': True }) with CallGraph(ct, mdnm, pth, 'bpdndl_init.svg', **kwargs): b = bpdndl.BPDNDictLearn(D0, S, lmbda, opt) with CallGraph(ct, mdnm, pth, 'bpdndl_solve.svg', **kwargs): b.solve() #### cbpdndl module from sporco.dictlrn import cbpdndl mdnm = 'sporco.dictlrn.cbpdndl' D0 = np.random.randn(4, 4, 16) s = np.random.randn(8, 8, 10) lmbda = 0.1 ## ConvBPDNDictLearn class opt = cbpdndl.ConvBPDNDictLearn.Options({ 'Verbose': False, 'MaxMainIter': 1, 'AccurateDFid': True }) with CallGraph(ct, mdnm, pth, 'cbpdndl_init.svg', **kwargs): b = cbpdndl.ConvBPDNDictLearn(D0, s, lmbda, opt) with CallGraph(ct, mdnm, pth, 'cbpdndl_solve.svg', **kwargs): b.solve() #### cbpdndlmd module from sporco.dictlrn import cbpdndlmd mdnm = 'sporco.dictlrn.cbpdndlmd' ## ConvBPDNMaskDcplDictLearn class W = np.array([1.0]) opt = cbpdndlmd.ConvBPDNMaskDictLearn.Options({ 'Verbose': False, 'MaxMainIter': 1, 'AccurateDFid': True }) with CallGraph(ct, mdnm, pth, 'cbpdnmddl_init.svg', **kwargs): b = cbpdndlmd.ConvBPDNMaskDictLearn(D0, s, lmbda, W, opt) with CallGraph(ct, mdnm, pth, 'cbpdnmddl_solve.svg', **kwargs): b.solve()