Exemple #1
0
def main():
    """ The main() function. """

    print("STARTING MINITAUR ARS")

    # TRAINING PARAMETERS
    # env_name = "MinitaurBulletEnv-v0"
    seed = 0
    if ARGS.Seed:
        seed = ARGS.Seed

    max_timesteps = 4e6
    file_name = "spot_ars_"

    if ARGS.DebugRack:
        on_rack = True
    else:
        on_rack = False

    if ARGS.DebugPath:
        draw_foot_path = True
    else:
        draw_foot_path = False

    if ARGS.HeightField:
        height_field = True
    else:
        height_field = False

    if ARGS.NoContactSensing:
        contacts = False
    else:
        contacts = True

    if ARGS.DontRender:
        render = False
    else:
        render = True

    if ARGS.DontRandomize:
        env_randomizer = None
    else:
        env_randomizer = SpotEnvRandomizer()

    # Find abs path to this file
    my_path = os.path.abspath(os.path.dirname(__file__))
    results_path = os.path.join(my_path, "../results")
    if contacts:
        models_path = os.path.join(my_path, "../models/contact")
    else:
        models_path = os.path.join(my_path, "../models/no_contact")

    if not os.path.exists(results_path):
        os.makedirs(results_path)

    if not os.path.exists(models_path):
        os.makedirs(models_path)

    env = spotBezierEnv(render=render,
                        on_rack=on_rack,
                        height_field=height_field,
                        draw_foot_path=draw_foot_path,
                        contacts=contacts,
                        env_randomizer=env_randomizer)

    # Set seeds
    env.seed(seed)
    np.random.seed(seed)

    state_dim = env.observation_space.shape[0]
    print("STATE DIM: {}".format(state_dim))
    action_dim = env.action_space.shape[0]
    print("ACTION DIM: {}".format(action_dim))
    max_action = float(env.action_space.high[0])

    env.reset()

    spot = SpotModel()

    bz_step = BezierStepper(dt=env._time_step)
    bzg = BezierGait(dt=env._time_step)

    # Initialize Normalizer
    normalizer = Normalizer(state_dim)

    # Initialize Policy
    policy = Policy(state_dim, action_dim)

    # to GUI or not to GUI
    if ARGS.GUI:
        gui = True
    else:
        gui = False

    # Initialize Agent with normalizer, policy and gym env
    agent = ARSAgent(normalizer, policy, env, bz_step, bzg, spot, gui)
    agent_num = 0
    if ARGS.AgentNum:
        agent_num = ARGS.AgentNum
    if os.path.exists(models_path + "/" + file_name + str(agent_num) +
                      "_policy"):
        print("Loading Existing agent")
        agent.load(models_path + "/" + file_name + str(agent_num))
        agent.policy.episode_steps = np.inf
        policy = agent.policy

    env.reset()
    episode_reward = 0
    episode_timesteps = 0
    episode_num = 0

    print("STARTED MINITAUR TEST SCRIPT")

    t = 0
    while t < (int(max_timesteps)):

        episode_reward, episode_timesteps = agent.deployTG()

        t += episode_timesteps
        # episode_reward = agent.train()
        # +1 to account for 0 indexing.
        # +0 on ep_timesteps since it will increment +1 even if done=True
        print("Total T: {} Episode Num: {} Episode T: {} Reward: {}".format(
            t, episode_num, episode_timesteps, episode_reward))
        episode_num += 1

        # Plot Policy Output
        if ARGS.PlotPolicy or ARGS.TrueAction or ARGS.SaveData:
            if ARGS.TrueAction:
                action_name = "robot_act"
                action = np.array(agent.true_action_history)
            else:
                action_name = "agent_act"
                action = np.array(agent.action_history)

            if ARGS.SaveData:
                if height_field:
                    terrain_name = "rough_"
                else:
                    terrain_name = "flat_"
                np.save(
                    results_path + "/" + "policy_out_" + terrain_name +
                    action_name, action)

                print("SAVED DATA")

            ClearHeight_act = action[:, 0]
            BodyHeight_act = action[:, 1]
            Residuals_act = action[:, 2:]

            plt.plot(ClearHeight_act,
                     label='Clearance Height Mod',
                     color='black')
            plt.plot(BodyHeight_act,
                     label='Body Height Mod',
                     color='darkviolet')

            # FL
            plt.plot(Residuals_act[:, 0],
                     label='Residual: FL (x)',
                     color='limegreen')
            plt.plot(Residuals_act[:, 1],
                     label='Residual: FL (y)',
                     color='lime')
            plt.plot(Residuals_act[:, 2],
                     label='Residual: FL (z)',
                     color='green')

            # FR
            plt.plot(Residuals_act[:, 3],
                     label='Residual: FR (x)',
                     color='lightskyblue')
            plt.plot(Residuals_act[:, 4],
                     label='Residual: FR (y)',
                     color='dodgerblue')
            plt.plot(Residuals_act[:, 5],
                     label='Residual: FR (z)',
                     color='blue')

            # BL
            plt.plot(Residuals_act[:, 6],
                     label='Residual: BL (x)',
                     color='firebrick')
            plt.plot(Residuals_act[:, 7],
                     label='Residual: BL (y)',
                     color='crimson')
            plt.plot(Residuals_act[:, 8],
                     label='Residual: BL (z)',
                     color='red')

            # BR
            plt.plot(Residuals_act[:, 9],
                     label='Residual: BR (x)',
                     color='gold')
            plt.plot(Residuals_act[:, 10],
                     label='Residual: BR (y)',
                     color='orange')
            plt.plot(Residuals_act[:, 11],
                     label='Residual: BR (z)',
                     color='coral')

            plt.xlabel("Epoch Iteration")
            plt.ylabel("Action Value")
            plt.title("Policy Output")
            plt.legend()
            plt.show()

    env.close()
Exemple #2
0
    def __init__(self,
                 distance_weight=1.0,
                 rotation_weight=1.0,
                 energy_weight=0.0005,
                 shake_weight=0.005,
                 drift_weight=2.0,
                 rp_weight=0.1,
                 rate_weight=0.1,
                 urdf_root=pybullet_data.getDataPath(),
                 urdf_version=None,
                 distance_limit=float("inf"),
                 observation_noise_stdev=SENSOR_NOISE_STDDEV,
                 self_collision_enabled=True,
                 motor_velocity_limit=np.inf,
                 pd_control_enabled=False,
                 leg_model_enabled=False,
                 accurate_motor_model_enabled=False,
                 remove_default_joint_damping=False,
                 motor_kp=2.0,
                 motor_kd=0.03,
                 control_latency=0.0,
                 pd_latency=0.0,
                 torque_control_enabled=False,
                 motor_overheat_protection=False,
                 hard_reset=False,
                 on_rack=False,
                 render=True,
                 num_steps_to_log=1000,
                 action_repeat=1,
                 control_time_step=None,
                 env_randomizer=SpotEnvRandomizer(),
                 forward_reward_cap=float("inf"),
                 reflection=True,
                 log_path=None,
                 desired_velocity=0.5,
                 desired_rate=0.0,
                 lateral=False,
                 draw_foot_path=False,
                 height_field=False,
                 height_field_iters=2,
                 AutoStepper=False,
                 contacts=True):
        """Initialize the spot gym environment.

    Args:
      urdf_root: The path to the urdf data folder.
      urdf_version: [DEFAULT_URDF_VERSION] are allowable
        versions. If None, DEFAULT_URDF_VERSION is used.
      distance_weight: The weight of the distance term in the reward.
      energy_weight: The weight of the energy term in the reward.
      shake_weight: The weight of the vertical shakiness term in the reward.
      drift_weight: The weight of the sideways drift term in the reward.
      distance_limit: The maximum distance to terminate the episode.
      observation_noise_stdev: The standard deviation of observation noise.
      self_collision_enabled: Whether to enable self collision in the sim.
      motor_velocity_limit: The velocity limit of each motor.
      pd_control_enabled: Whether to use PD controller for each motor.
      leg_model_enabled: Whether to use a leg motor to reparameterize the action
        space.
      accurate_motor_model_enabled: Whether to use the accurate DC motor model.
      remove_default_joint_damping: Whether to remove the default joint damping.
      motor_kp: proportional gain for the accurate motor model.
      motor_kd: derivative gain for the accurate motor model.
      control_latency: It is the delay in the controller between when an
        observation is made at some point, and when that reading is reported
        back to the Neural Network.
      pd_latency: latency of the PD controller loop. PD calculates PWM based on
        the motor angle and velocity. The latency measures the time between when
        the motor angle and velocity are observed on the microcontroller and
        when the true state happens on the motor. It is typically (0.001-
        0.002s).
      torque_control_enabled: Whether to use the torque control, if set to
        False, pose control will be used.
      motor_overheat_protection: Whether to shutdown the motor that has exerted
        large torque (OVERHEAT_SHUTDOWN_TORQUE) for an extended amount of time
        (OVERHEAT_SHUTDOWN_TIME). See ApplyAction() in spot.py for more
        details.
      hard_reset: Whether to wipe the simulation and load everything when reset
        is called. If set to false, reset just place spot back to start
        position and set its pose to initial configuration.
      on_rack: Whether to place spot on rack. This is only used to debug
        the walking gait. In this mode, spot's base is hanged midair so
        that its walking gait is clearer to visualize.
      render: Whether to render the simulation.
      num_steps_to_log: The max number of control steps in one episode that will
        be logged. If the number of steps is more than num_steps_to_log, the
        environment will still be running, but only first num_steps_to_log will
        be recorded in logging.
      action_repeat: The number of simulation steps before actions are applied.
      control_time_step: The time step between two successive control signals.
      env_randomizer: An instance (or a list) of EnvRandomizer(s). An
        EnvRandomizer may randomize the physical property of spot, change
          the terrrain during reset(), or add perturbation forces during step().
      forward_reward_cap: The maximum value that forward reward is capped at.
        Disabled (Inf) by default.
      log_path: The path to write out logs. For the details of logging, refer to
        spot_logging.proto.
    Raises:
      ValueError: If the urdf_version is not supported.
    """
        # Sense Contacts
        self.contacts = contacts
        # Enable Auto Stepper State Machine
        self.AutoStepper = AutoStepper
        # Enable Rough Terrain or Not
        self.height_field = height_field
        self.draw_foot_path = draw_foot_path
        # DRAWING FEET PATH
        self.prev_feet_path = np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0],
                                        [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]])

        # CONTROL METRICS
        self.desired_velocity = desired_velocity
        self.desired_rate = desired_rate
        self.lateral = lateral

        # Set up logging.
        self._log_path = log_path
        # @TODO fix logging

        # NUM ITERS
        self._time_step = 0.01
        self._action_repeat = action_repeat
        self._num_bullet_solver_iterations = 300
        self.logging = None
        if pd_control_enabled or accurate_motor_model_enabled:
            self._time_step /= NUM_SUBSTEPS
            self._num_bullet_solver_iterations /= NUM_SUBSTEPS
            self._action_repeat *= NUM_SUBSTEPS
        # PD control needs smaller time step for stability.
        if control_time_step is not None:
            self.control_time_step = control_time_step
        else:
            # Get Control Timestep
            self.control_time_step = self._time_step * self._action_repeat
        # TODO: Fix the value of self._num_bullet_solver_iterations.
        self._num_bullet_solver_iterations = int(
            NUM_SIMULATION_ITERATION_STEPS / self._action_repeat)

        # URDF
        self._urdf_root = urdf_root
        self._self_collision_enabled = self_collision_enabled
        self._motor_velocity_limit = motor_velocity_limit
        self._observation = []
        self._true_observation = []
        self._objectives = []
        self._objective_weights = [
            distance_weight, energy_weight, drift_weight, shake_weight
        ]
        self._env_step_counter = 0
        self._num_steps_to_log = num_steps_to_log
        self._is_render = render
        self._last_base_position = [0, 0, 0]
        self._last_base_orientation = [0, 0, 0, 1]
        self._distance_weight = distance_weight
        self._rotation_weight = rotation_weight
        self._energy_weight = energy_weight
        self._drift_weight = drift_weight
        self._shake_weight = shake_weight
        self._rp_weight = rp_weight
        self._rate_weight = rate_weight
        self._distance_limit = distance_limit
        self._observation_noise_stdev = observation_noise_stdev
        self._action_bound = 1
        self._pd_control_enabled = pd_control_enabled
        self._leg_model_enabled = leg_model_enabled
        self._accurate_motor_model_enabled = accurate_motor_model_enabled
        self._remove_default_joint_damping = remove_default_joint_damping
        self._motor_kp = motor_kp
        self._motor_kd = motor_kd
        self._torque_control_enabled = torque_control_enabled
        self._motor_overheat_protection = motor_overheat_protection
        self._on_rack = on_rack
        self._cam_dist = 1.0
        self._cam_yaw = 0
        self._cam_pitch = -30
        self._forward_reward_cap = forward_reward_cap
        self._hard_reset = True
        self._last_frame_time = 0.0
        self._control_latency = control_latency
        self._pd_latency = pd_latency
        self._urdf_version = urdf_version
        self._ground_id = None
        self._reflection = reflection
        self._env_randomizer = env_randomizer
        # @TODO fix logging
        self._episode_proto = None
        if self._is_render:
            self._pybullet_client = bullet_client.BulletClient(
                connection_mode=pybullet.GUI)
        else:
            self._pybullet_client = bullet_client.BulletClient()
        if self._urdf_version is None:
            self._urdf_version = DEFAULT_URDF_VERSION
        self._pybullet_client.setPhysicsEngineParameter(enableConeFriction=0)
        self.seed()
        # Only update after HF has been generated
        self.height_field = False
        self.reset()
        observation_high = (self.spot.GetObservationUpperBound() +
                            OBSERVATION_EPS)
        observation_low = (self.spot.GetObservationLowerBound() -
                           OBSERVATION_EPS)
        action_dim = NUM_MOTORS
        action_high = np.array([self._action_bound] * action_dim)
        self.action_space = spaces.Box(-action_high, action_high)
        self.observation_space = spaces.Box(observation_low, observation_high)
        self.viewer = None
        self._hard_reset = hard_reset  # This assignment need to be after reset()
        self.goal_reached = False
        # Generate HeightField or not
        self.height_field = height_field
        self.hf = HeightField()
        if self.height_field:
            # Do 3x for extra roughness
            for i in range(height_field_iters):
                self.hf._generate_field(self)
    def __init__(self,
                 distance_weight=1.0,
                 rotation_weight=0.0,
                 energy_weight=0.000,
                 shake_weight=0.00,
                 drift_weight=0.0,
                 rp_weight=10.0,
                 rate_weight=.03,
                 urdf_root=pybullet_data.getDataPath(),
                 urdf_version=None,
                 distance_limit=float("inf"),
                 observation_noise_stdev=SENSOR_NOISE_STDDEV,
                 self_collision_enabled=True,
                 motor_velocity_limit=np.inf,
                 pd_control_enabled=False,
                 leg_model_enabled=False,
                 accurate_motor_model_enabled=False,
                 remove_default_joint_damping=False,
                 motor_kp=2.0,
                 motor_kd=0.03,
                 control_latency=0.0,
                 pd_latency=0.0,
                 torque_control_enabled=False,
                 motor_overheat_protection=False,
                 hard_reset=False,
                 on_rack=False,
                 render=True,
                 num_steps_to_log=1000,
                 action_repeat=1,
                 control_time_step=None,
                 env_randomizer=SpotEnvRandomizer(),
                 forward_reward_cap=float("inf"),
                 reflection=True,
                 log_path=None,
                 desired_velocity=0.5,
                 desired_rate=0.0,
                 lateral=False,
                 draw_foot_path=False,
                 height_field=False,
                 AutoStepper=True,
                 action_dim=14,
                 contacts=True):

        super(spotBezierEnv, self).__init__(
            distance_weight=distance_weight,
            rotation_weight=rotation_weight,
            energy_weight=energy_weight,
            shake_weight=shake_weight,
            drift_weight=drift_weight,
            rp_weight=rp_weight,
            rate_weight=rate_weight,
            urdf_root=urdf_root,
            urdf_version=urdf_version,
            distance_limit=distance_limit,
            observation_noise_stdev=observation_noise_stdev,
            self_collision_enabled=self_collision_enabled,
            motor_velocity_limit=motor_velocity_limit,
            pd_control_enabled=pd_control_enabled,
            leg_model_enabled=leg_model_enabled,
            accurate_motor_model_enabled=accurate_motor_model_enabled,
            remove_default_joint_damping=remove_default_joint_damping,
            motor_kp=motor_kp,
            motor_kd=motor_kd,
            control_latency=control_latency,
            pd_latency=pd_latency,
            torque_control_enabled=torque_control_enabled,
            motor_overheat_protection=motor_overheat_protection,
            hard_reset=hard_reset,
            on_rack=on_rack,
            render=render,
            num_steps_to_log=num_steps_to_log,
            action_repeat=action_repeat,
            control_time_step=control_time_step,
            env_randomizer=env_randomizer,
            forward_reward_cap=forward_reward_cap,
            reflection=reflection,
            log_path=log_path,
            desired_velocity=desired_velocity,
            desired_rate=desired_rate,
            lateral=lateral,
            draw_foot_path=draw_foot_path,
            height_field=height_field,
            AutoStepper=AutoStepper,
            contacts=contacts)

        # Residuals + Clearance Height + Penetration Depth
        action_high = np.array([self._action_bound] * action_dim)
        self.action_space = spaces.Box(-action_high, action_high)
        print("Action SPACE: {}".format(self.action_space))

        self.prev_pos = np.array([0.0, 0.0, 0.0])

        self.yaw = 0.0
Exemple #4
0
def main():
    """ The main() function. """
    # Hold mp pipes
    mp.freeze_support()

    print("STARTING SPOT TRAINING ENV")
    seed = 0
    max_timesteps = 4e6
    eval_freq = 1e1
    save_model = True
    file_name = "spot_ars_"

    if ARGS.HeightField:
        height_field = True
    else:
        height_field = False

    if ARGS.NoContactSensing:
        contacts = False
    else:
        contacts = True

    if ARGS.DontRandomize:
        env_randomizer = None
    else:
        env_randomizer = SpotEnvRandomizer()

    # Find abs path to this file
    my_path = os.path.abspath(os.path.dirname(__file__))
    results_path = os.path.join(my_path, "../results")
    if contacts:
        models_path = os.path.join(my_path, "../models/contact")
    else:
        models_path = os.path.join(my_path, "../models/no_contact")

    if not os.path.exists(results_path):
        os.makedirs(results_path)

    if not os.path.exists(models_path):
        os.makedirs(models_path)

    env = spotBezierEnv(render=False,
                        on_rack=False,
                        height_field=height_field,
                        draw_foot_path=False,
                        contacts=contacts,
                        env_randomizer=env_randomizer)

    # Set seeds
    env.seed(seed)
    np.random.seed(seed)

    state_dim = env.observation_space.shape[0]
    print("STATE DIM: {}".format(state_dim))
    action_dim = env.action_space.shape[0]
    print("ACTION DIM: {}".format(action_dim))
    max_action = float(env.action_space.high[0])

    env.reset()

    g_u_i = GUI(env.spot.quadruped)

    spot = SpotModel()
    T_bf = spot.WorldToFoot

    bz_step = BezierStepper(dt=env._time_step)
    bzg = BezierGait(dt=env._time_step)

    # Initialize Normalizer
    normalizer = Normalizer(state_dim)

    # Initialize Policy
    policy = Policy(state_dim, action_dim)

    # Initialize Agent with normalizer, policy and gym env
    agent = ARSAgent(normalizer, policy, env, bz_step, bzg, spot)
    agent_num = 0
    if os.path.exists(models_path + "/" + file_name + str(agent_num) +
                      "_policy"):
        print("Loading Existing agent")
        agent.load(models_path + "/" + file_name + str(agent_num))

    env.reset(agent.desired_velocity, agent.desired_rate)

    episode_reward = 0
    episode_timesteps = 0
    episode_num = 0

    # Create mp pipes
    num_processes = policy.num_deltas
    processes = []
    childPipes = []
    parentPipes = []

    # Store mp pipes
    for pr in range(num_processes):
        parentPipe, childPipe = Pipe()
        parentPipes.append(parentPipe)
        childPipes.append(childPipe)

    # Start multiprocessing
    # Start multiprocessing
    for proc_num in range(num_processes):
        p = mp.Process(target=ParallelWorker,
                       args=(childPipes[proc_num], env, state_dim))
        p.start()
        processes.append(p)

    print("STARTED SPOT TRAINING ENV")
    t = 0
    while t < (int(max_timesteps)):

        # Maximum timesteps per rollout

        episode_reward, episode_timesteps = agent.train_parallel(parentPipes)
        t += episode_timesteps
        # episode_reward = agent.train()
        # +1 to account for 0 indexing.
        # +0 on ep_timesteps since it will increment +1 even if done=True
        print(
            "Total T: {} Episode Num: {} Episode T: {} Reward: {:.2f} REWARD PER STEP: {:.2f}"
            .format(t + 1, episode_num, episode_timesteps, episode_reward,
                    episode_reward / float(episode_timesteps)))

        # Store Results (concat)
        if episode_num == 0:
            res = np.array(
                [[episode_reward, episode_reward / float(episode_timesteps)]])
        else:
            new_res = np.array(
                [[episode_reward, episode_reward / float(episode_timesteps)]])
            res = np.concatenate((res, new_res))

        # Also Save Results So Far (Overwrite)
        # Results contain 2D numpy array of total reward for each ep
        # and reward per timestep for each ep
        np.save(results_path + "/" + str(file_name), res)

        # Evaluate episode
        if (episode_num + 1) % eval_freq == 0:
            if save_model:
                agent.save(models_path + "/" + str(file_name) +
                           str(episode_num))

        episode_num += 1

    # Close pipes and hence envs
    for parentPipe in parentPipes:
        parentPipe.send([_CLOSE, "pay2"])

    for p in processes:
        p.join()
Exemple #5
0
def main():
    """ The main() function. """

    print("STARTING SPOT TEST ENV")
    seed = 0
    max_timesteps = 4e6

    # Find abs path to this file
    my_path = os.path.abspath(os.path.dirname(__file__))
    results_path = os.path.join(my_path, "../results")
    models_path = os.path.join(my_path, "../models")

    if not os.path.exists(results_path):
        os.makedirs(results_path)

    if not os.path.exists(models_path):
        os.makedirs(models_path)

    if ARGS.DebugRack:
        on_rack = True
    else:
        on_rack = False

    if ARGS.DebugPath:
        draw_foot_path = True
    else:
        draw_foot_path = False

    if ARGS.HeightField:
        height_field = True
    else:
        height_field = False

    if ARGS.DontRandomize:
        env_randomizer = None
    else:
        env_randomizer = SpotEnvRandomizer()

    env = spotBezierEnv(render=True,
                        on_rack=on_rack,
                        height_field=height_field,
                        draw_foot_path=draw_foot_path,
                        env_randomizer=env_randomizer)

    # Set seeds
    env.seed(seed)
    np.random.seed(seed)

    state_dim = env.observation_space.shape[0]
    print("STATE DIM: {}".format(state_dim))
    action_dim = env.action_space.shape[0]
    print("ACTION DIM: {}".format(action_dim))
    max_action = float(env.action_space.high[0])

    state = env.reset()

    g_u_i = GUI(env.spot.quadruped)

    spot = SpotModel()
    T_bf0 = spot.WorldToFoot
    T_bf = copy.deepcopy(T_bf0)

    bzg = BezierGait(dt=env._time_step)

    bz_step = BezierStepper(dt=env._time_step, mode=0)

    action = env.action_space.sample()

    FL_phases = []
    FR_phases = []
    BL_phases = []
    BR_phases = []

    FL_Elbow = []

    yaw = 0.0

    print("STARTED SPOT TEST ENV")
    t = 0
    while t < (int(max_timesteps)):

        bz_step.ramp_up()

        pos, orn, StepLength, LateralFraction, YawRate, StepVelocity, ClearanceHeight, PenetrationDepth = bz_step.StateMachine(
        )

        pos, orn, StepLength, LateralFraction, YawRate, StepVelocity, ClearanceHeight, PenetrationDepth, SwingPeriod = g_u_i.UserInput(
        )

        # Update Swing Period
        bzg.Tswing = SwingPeriod

        yaw = env.return_yaw()

        P_yaw = 5.0

        if ARGS.AutoYaw:
            YawRate += -yaw * P_yaw

        # print("YAW RATE: {}".format(YawRate))

        # TEMP
        bz_step.StepLength = StepLength
        bz_step.LateralFraction = LateralFraction
        bz_step.YawRate = YawRate
        bz_step.StepVelocity = StepVelocity

        contacts = state[-4:]

        FL_phases.append(env.spot.LegPhases[0])
        FR_phases.append(env.spot.LegPhases[1])
        BL_phases.append(env.spot.LegPhases[2])
        BR_phases.append(env.spot.LegPhases[3])

        # Get Desired Foot Poses
        T_bf = bzg.GenerateTrajectory(StepLength, LateralFraction, YawRate,
                                      StepVelocity, T_bf0, T_bf,
                                      ClearanceHeight, PenetrationDepth,
                                      contacts)
        joint_angles = spot.IK(orn, pos, T_bf)

        FL_Elbow.append(np.degrees(joint_angles[0][-1]))

        for i, (key, Tbf_in) in enumerate(T_bf.items()):
            print("{}: \t Angle: {}".format(key, np.degrees(joint_angles[i])))
        print("-------------------------")

        env.pass_joint_angles(joint_angles.reshape(-1))
        # Get External Observations
        env.spot.GetExternalObservations(bzg, bz_step)
        # Step
        state, reward, done, _ = env.step(action)
        # print("IMU Roll: {}".format(state[0]))
        # print("IMU Pitch: {}".format(state[1]))
        # print("IMU GX: {}".format(state[2]))
        # print("IMU GY: {}".format(state[3]))
        # print("IMU GZ: {}".format(state[4]))
        # print("IMU AX: {}".format(state[5]))
        # print("IMU AY: {}".format(state[6]))
        # print("IMU AZ: {}".format(state[7]))
        # print("-------------------------")
        if done:
            print("DONE")
            if ARGS.AutoReset:
                env.reset()
                # plt.plot()
                # # plt.plot(FL_phases, label="FL")
                # # plt.plot(FR_phases, label="FR")
                # # plt.plot(BL_phases, label="BL")
                # # plt.plot(BR_phases, label="BR")
                # plt.plot(FL_Elbow, label="FL ELbow (Deg)")
                # plt.xlabel("dt")
                # plt.ylabel("value")
                # plt.title("Leg Phases")
                # plt.legend()
                # plt.show()

        # time.sleep(1.0)

        t += 1
    env.close()
    print(joint_angles)
Exemple #6
0
def main():
    """ The main() function. """

    print("STARTING MINITAUR ARS")

    # TRAINING PARAMETERS
    # env_name = "MinitaurBulletEnv-v0"
    seed = 0
    max_timesteps = 4e6
    file_name = "spot_ars_"

    if ARGS.DebugRack:
        on_rack = True
    else:
        on_rack = False

    if ARGS.DebugPath:
        draw_foot_path = True
    else:
        draw_foot_path = False

    if ARGS.HeightField:
        height_field = True
    else:
        height_field = False

    if ARGS.NoContactSensing:
        contacts = False
    else:
        contacts = True

    if ARGS.DontRender:
        render = False
    else:
        render = True

    if ARGS.DontRandomize:
        env_randomizer = None
    else:
        env_randomizer = SpotEnvRandomizer()

    # Find abs path to this file
    my_path = os.path.abspath(os.path.dirname(__file__))
    results_path = os.path.join(my_path, "../results")
    if contacts:
        models_path = os.path.join(my_path, "../models/contact")
    else:
        models_path = os.path.join(my_path, "../models/no_contact")

    if not os.path.exists(results_path):
        os.makedirs(results_path)

    if not os.path.exists(models_path):
        os.makedirs(models_path)

    env = spotBezierEnv(render=render,
                        on_rack=on_rack,
                        height_field=height_field,
                        draw_foot_path=draw_foot_path,
                        contacts=contacts,
                        env_randomizer=env_randomizer)

    # Set seeds
    env.seed(seed)
    np.random.seed(seed)

    state_dim = env.observation_space.shape[0]
    print("STATE DIM: {}".format(state_dim))
    action_dim = env.action_space.shape[0]
    print("ACTION DIM: {}".format(action_dim))
    max_action = float(env.action_space.high[0])

    env.reset()

    spot = SpotModel()

    bz_step = BezierStepper(dt=env._time_step)
    bzg = BezierGait(dt=env._time_step)

    # Initialize Normalizer
    normalizer = Normalizer(state_dim)

    # Initialize Policy
    policy = Policy(state_dim, action_dim)

    # to GUI or not to GUI
    if ARGS.GUI:
        gui = True
    else:
        gui = False

    # Initialize Agent with normalizer, policy and gym env
    agent = ARSAgent(normalizer, policy, env, bz_step, bzg, spot, gui)
    agent_num = 0
    if ARGS.AgentNum:
        agent_num = ARGS.AgentNum
    if os.path.exists(models_path + "/" + file_name + str(agent_num) +
                      "_policy"):
        print("Loading Existing agent")
        agent.load(models_path + "/" + file_name + str(agent_num))
        agent.policy.episode_steps = np.inf
        policy = agent.policy

    env.reset()
    episode_reward = 0
    episode_timesteps = 0
    episode_num = 0

    print("STARTED MINITAUR TEST SCRIPT")

    t = 0
    while t < (int(max_timesteps)):

        episode_reward, episode_timesteps = agent.deployTG()

        t += episode_timesteps
        # episode_reward = agent.train()
        # +1 to account for 0 indexing.
        # +0 on ep_timesteps since it will increment +1 even if done=True
        print("Total T: {} Episode Num: {} Episode T: {} Reward: {}".format(
            t, episode_num, episode_timesteps, episode_reward))
        episode_num += 1

    env.close()
Exemple #7
0
def main():
    """ The main() function. """

    print("STARTING MINITAUR ARS")

    # TRAINING PARAMETERS
    # env_name = "MinitaurBulletEnv-v0"
    seed = 0
    max_episodes = 1000
    if ARGS.NumberOfEpisodes:
        max_episodes = ARGS.NumberOfEpisodes
    if ARGS.HeightField:
        height_field = True
    else:
        height_field = False

    if ARGS.NoContactSensing:
        contacts = False
    else:
        contacts = True

    if ARGS.DontRandomize:
        env_randomizer = None
    else:
        env_randomizer = SpotEnvRandomizer()

    file_name = "spot_ars_"

    # Find abs path to this file
    my_path = os.path.abspath(os.path.dirname(__file__))
    results_path = os.path.join(my_path, "../results")
    if contacts:
        models_path = os.path.join(my_path, "../models/contact")
    else:
        models_path = os.path.join(my_path, "../models/no_contact")

    if not os.path.exists(results_path):
        os.makedirs(results_path)

    if not os.path.exists(models_path):
        os.makedirs(models_path)

    if ARGS.HeightField:
        height_field = True
    else:
        height_field = False

    env = spotBezierEnv(render=False,
                        on_rack=False,
                        height_field=height_field,
                        draw_foot_path=False,
                        contacts=contacts,
                        env_randomizer=env_randomizer)

    # Set seeds
    env.seed(seed)
    np.random.seed(seed)

    state_dim = env.observation_space.shape[0]
    print("STATE DIM: {}".format(state_dim))
    action_dim = env.action_space.shape[0]
    print("ACTION DIM: {}".format(action_dim))
    max_action = float(env.action_space.high[0])

    env.reset()

    spot = SpotModel()

    bz_step = BezierStepper(dt=env._time_step)
    bzg = BezierGait(dt=env._time_step)

    # Initialize Normalizer
    normalizer = Normalizer(state_dim)

    # Initialize Policy
    policy = Policy(state_dim, action_dim, episode_steps=np.inf)

    # Initialize Agent with normalizer, policy and gym env
    agent = ARSAgent(normalizer, policy, env, bz_step, bzg, spot, False)
    use_agent = False
    agent_num = 0
    if ARGS.AgentNum:
        agent_num = ARGS.AgentNum
        use_agent = True
    if os.path.exists(models_path + "/" + file_name + str(agent_num) +
                      "_policy"):
        print("Loading Existing agent")
        agent.load(models_path + "/" + file_name + str(agent_num))
        agent.policy.episode_steps = 50000
        policy = agent.policy

    env.reset()
    episode_reward = 0
    episode_timesteps = 0
    episode_num = 0

    print("STARTED MINITAUR TEST SCRIPT")

    # Used to create gaussian distribution of survival distance
    surv_pos = []

    # Reset every 200 episodes (pb client doesn't like running for long)
    reset_ep = 200

    while episode_num < (int(max_episodes)):

        episode_reward, episode_timesteps = agent.deployTG()
        # We only care about x/y pos
        travelled_pos = list(agent.returnPose())
        # NOTE: FORMAT: X, Y, TIMESTEPS -
        # tells us if robobt was just stuck forever. didn't actually fall.
        travelled_pos[-1] = episode_timesteps
        episode_num += 1

        # Store dt and frequency for prob distribution
        surv_pos.append(travelled_pos)

        print("Episode Num: {} Episode T: {} Reward: {}".format(
            episode_num, episode_timesteps, episode_reward))
        print("Survival Pos: {}".format(surv_pos[-1]))

        # Reset every X episodes (pb client doesn't like running for long)
        if episode_num % reset_ep == 0:
            env.close()
            env = spotBezierEnv(render=False,
                                on_rack=False,
                                height_field=height_field,
                                draw_foot_path=False,
                                contacts=contacts,
                                env_randomizer=env_randomizer)

            # Set seeds
            env.seed(seed)
            agent.env = env

    env.close()
    print("---------------------------------------")

    # Store results
    if use_agent:
        # Store _agent
        agt = "agent_" + str(agent_num)
    else:
        # Store _vanilla
        agt = "vanilla"

    with open(
            results_path + "/" + str(file_name) + agt + '_survival_' +
            str(max_episodes), 'wb') as filehandle:
        pickle.dump(surv_pos, filehandle)