Exemple #1
0
    def __init__(self,
                 spot_setup,
                 dbname=None,
                 dbformat=None,
                 dbinit=True,
                 dbappend=False,
                 parallel='seq',
                 save_sim=True,
                 breakpoint=None,
                 backup_every_rep=100,
                 save_threshold=-np.inf,
                 db_precision=np.float16,
                 sim_timeout=None,
                 random_state=None,
                 optimization_direction='grid',
                 algorithm_name=''):

        # Initialize the user defined setup class
        self.setup = spot_setup
        param_info = parameter.get_parameters_array(
            self.setup,
            unaccepted_parameter_types=self._unaccepted_parameter_types)
        self.all_params = param_info['random']
        self.constant_positions = parameter.get_constant_indices(spot_setup)
        if self.constant_positions:
            self.non_constant_positions = []
            for i, val in enumerate(self.all_params):
                if self.all_params[i] not in self.constant_positions:
                    self.non_constant_positions.append(i)
        else:
            self.non_constant_positions = np.arange(0, len(self.all_params))
        self.parameter = self.get_parameters
        self.parnames = param_info['name']
        self.algorithm_name = algorithm_name
        # Create a type to hold the parameter values using a namedtuple
        self.partype = parameter.ParameterSet(param_info)

        self.evaluation = self.setup.evaluation()
        self.save_sim = save_sim
        self.optimization_direction = optimization_direction
        self.dbname = dbname or 'customDb'
        self.dbformat = dbformat or 'ram'
        self.db_precision = db_precision
        self.breakpoint = breakpoint
        self.backup_every_rep = backup_every_rep
        # Two parameters to control the data base handling
        # 'dbinit' triggers the initial creation of the data base file
        # 'dbappend' used to append to the existing data base, after restart
        self.dbinit = dbinit
        self.dbappend = dbappend

        # Set the random state
        if random_state is None:  #ToDo: Have to discuss if these 3 lines are neccessary.
            random_state = np.random.randint(low=0, high=2**30)
        np.random.seed(random_state)

        # If value is not None a timeout will set so that the simulation will break after sim_timeout seconds without return a value
        self.sim_timeout = sim_timeout
        self.save_threshold = save_threshold

        if breakpoint == 'read' or breakpoint == 'readandwrite':
            print('Reading backupfile')
            try:
                open(self.dbname + '.break')
            except FileNotFoundError:
                print('Backupfile not found')
            self.dbappend = True

        # Now a repeater (ForEach-object) is loaded
        # A repeater is a convinent wrapper to repeat tasks
        # We have the same interface for sequential and for parallel tasks
        if parallel == 'seq':
            from spotpy.parallel.sequential import ForEach
        elif parallel == 'mpi':
            from spotpy.parallel.mpi import ForEach

        # MPC is based on pathos mutiprocessing and uses ordered map, so results are given back in the order
        # as the parameters are
        elif parallel == 'mpc':
            from spotpy.parallel.mproc import ForEach

        # UMPC is based on pathos mutiprocessing and uses unordered map, so results are given back in the order
        # as the subprocesses are finished which may speed up the whole simulation process but is not recommended if
        # objective functions do their calculation based on the order of the data because the order of the result is chaotic
        # and randomized
        elif parallel == 'umpc':
            from spotpy.parallel.umproc import ForEach
        else:
            raise ValueError(
                "'%s' is not a valid keyword for parallel processing" %
                parallel)

        # This is the repeater for the model runs. The simulate method does the work
        # If you need different tasks, the repeater can be pushed into a "phase" using the
        # setphase function. The simulate method can check the current phase and dispatch work
        # to other functions. This is introduced for sceua to differentiate between burn in and
        # the normal work on the chains
        self.repeat = ForEach(self.simulate)

        # method "save" needs to know whether objective function result is list or float, default is float
        self.like_struct_typ = type(1.1)
Exemple #2
0
    def __init__(self,
                 spot_setup,
                 dbname=None,
                 dbformat=None,
                 dbinit=True,
                 dbappend=False,
                 parallel='seq',
                 save_sim=True,
                 alt_objfun=None,
                 breakpoint=None,
                 backup_every_rep=100,
                 save_threshold=-np.inf,
                 db_precision=np.float16,
                 sim_timeout=None,
                 random_state=None):
        # Initialize the user defined setup class
        self.setup = spot_setup
        # Philipp: Changed from Tobi's version, now we are using both new class defined parameters
        # as well as the parameters function. The new method get_parameters
        # can deal with a missing parameters function
        #
        # For me (Philipp) it is totally unclear why all the samplers should call this function
        # again and again instead of
        # TODO: just storing a definite list of parameter objects here
        param_info = parameter.get_parameters_array(
            self.setup,
            unaccepted_parameter_types=self._unaccepted_parameter_types)
        self.all_params = param_info['random']
        self.constant_positions = parameter.get_constant_indices(spot_setup)
        if self.constant_positions:
            self.non_constant_positions = []
            for i, val in enumerate(self.all_params):
                if self.all_params[i] not in self.constant_positions:
                    self.non_constant_positions.append(i)
        else:
            self.non_constant_positions = np.arange(0, len(self.all_params))
        self.parameter = self.get_parameters
        self.parnames = param_info['name']

        # Create a type to hold the parameter values using a namedtuple
        self.partype = parameter.ParameterSet(param_info)

        # use alt_objfun if alt_objfun is defined in objectivefunctions,
        # else self.setup.objectivefunction
        self.objectivefunction = getattr(objectivefunctions, alt_objfun or '',
                                         None) or self.setup.objectivefunction
        self.evaluation = self.setup.evaluation()
        self.save_sim = save_sim
        self.dbname = dbname or 'customDb'
        self.dbformat = dbformat or 'ram'
        self.db_precision = db_precision
        self.breakpoint = breakpoint
        self.backup_every_rep = backup_every_rep
        # Two parameters to control the data base handling
        # 'dbinit' triggers the initial creation of the data base file
        # 'dbappend' used to append to the existing data base, after restart
        self.dbinit = dbinit
        self.dbappend = dbappend

        # Set the random state
        if random_state is None:  #ToDo: Have to discuss if these 3 lines are neccessary.
            random_state = np.random.randint(low=0, high=2**30)
        np.random.seed(random_state)

        # If value is not None a timeout will set so that the simulation will break after sim_timeout seconds without return a value
        self.sim_timeout = sim_timeout
        self.save_threshold = save_threshold

        if breakpoint == 'read' or breakpoint == 'readandwrite':
            print('Reading backupfile')
            self.dbappend = True
            self.breakdata = self.read_breakdata(self.dbname)

        # Now a repeater (ForEach-object) is loaded
        # A repeater is a convinent wrapper to repeat tasks
        # We have the same interface for sequential and for parallel tasks
        if parallel == 'seq':
            from spotpy.parallel.sequential import ForEach
        elif parallel == 'mpi':
            from spotpy.parallel.mpi import ForEach

        # MPC is based on pathos mutiprocessing and uses ordered map, so results are given back in the order
        # as the parameters are
        elif parallel == 'mpc':
            from spotpy.parallel.mproc import ForEach

        # UMPC is based on pathos mutiprocessing and uses unordered map, so results are given back in the order
        # as the subprocesses are finished which may speed up the whole simulation process but is not recommended if
        # objective functions do their calculation based on the order of the data because the order of the result is chaotic
        # and randomized
        elif parallel == 'umpc':
            from spotpy.parallel.umproc import ForEach
        else:
            raise ValueError(
                "'%s' is not a valid keyword for parallel processing" %
                parallel)

        # This is the repeater for the model runs. The simulate method does the work
        # If you need different tasks, the repeater can be pushed into a "phase" using the
        # setphase function. The simulate method can check the current phase and dispatch work
        # to other functions. This is introduced for sceua to differentiate between burn in and
        # the normal work on the chains
        self.repeat = ForEach(self.simulate)

        self.status = _RunStatistic()